首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Buds ofCassiopeia andromeda have been transected into fragments of various sizes. Depending on their original position in the organism, on their size and on the age of the dissected buds, the fragments either regenerated or developed to a solitary polyp's head without stalk and peduncle. Generally, basal fragments tended to regenerate complete buds, young apical parts mostly differenciated polyp heads whereas apical and middle parts of progressively older buds regenerated buds with increasing frequency. To explain the alteration of the developmental capacities a head inhibitor is postulated which originates from the basal end of the buds and which expands towards the apical pole with increasing age of the buds.  相似文献   

2.
The polyps of Cassiopea andromeda produce spindle shaped, freely swimming buds which do not develop a head (a mouth opening surrounded by tentacles) and a foot (a sticky plate at the opposite end) until settlement to a suited substrate. The buds, therewith, look very similar to the planula larvae produced in sexual reproduction. With respect to both, buds and planulae, several peptides and the phorbolester TPA have been found to induce the transformation into a polyp. Here it is shown that cantharidin, a serine/threonine protein phosphatase inhibitor, induces head and foot formation in buds very efficiently in a 30 min treatment, the shortest yet known efficient treatment. Some resultant polyps show malformations which indicate that a bud is ordinary polyp tissue in which preparatory steps of head and foot formation mutually block each other from proceeding. Various compounds related to the transfer of methyl groups have been shown to affect head and foot formation in larvae of the hydrozoon Hydractinia echinata. These compounds including methionine, homocysteine, trigonelline, nicotinic acid and cycloleucine are shown to also interfere with the initiation of the processes which finally lead to head and foot formation in buds of Cassiopea andromeda.  相似文献   

3.
In the metagenetic life-cycle of the scyphozoan Cassiopea xamachana metamorphosis of planula-larvae or larva-like buds to polyps is triggered by specific external cues which are transmitted inside the larva or bud where internal signals finally coordinate the initiation of metamorphosis. This study deals with an endogenous metamorphosis inducer present in planulae and buds of Cassiopea. The inductive cue is localized in the basal part of the buds and can be characterized as a peptide with an apparent molecular weight of about 7,000 Da. Further purification was performed via reversed phase HPLC on a C18 column. Additional inhibitor assays revealed that protein kinase C and PI3 kinase, two known elements of the metamorphosis-inducing signal transduction cascade in Cassiopea, may act downstream of the endogenous inducing peptide.  相似文献   

4.
In isolated leaves ofBryophylluni crenatum the intensity of marginal bud formation decreases from the apex towards the blade base, which is associated with the decreasing content of enioganous gibberallins. As proved by Dostál (1930), the formation of marginal buds on transversely divided blade of the isolated leaf increases in comparison with the non-divided control leaf. The results of our experiments have revealed that the increase in the formation of marginal buds in the blade transversely divided into the apical, middle and basal parts is connected with the increasing level of endogenous gibberellins, especially in the apical part. This rising level appears as early as 7 days following blade division,i.e. at the time preceding the formation of marginal bud bases. InBryophyllum crenatum plants the level of endogenous cytokinins was estimated in apical, middle and basal leaves, as well as in adjacent internodia. Maximum content was found out in the leaves from the middle stem part, which is probably associated with the capacity of this part to form marginal buds spontaneously also in intact plants. However, prior to flowering the maximum of cytokinin activity is shifted to the apical stem part.  相似文献   

5.
Summary The scyphozoan polyp Cassiopea forms vegetative free swimming buds that metamorphose into sessile polyps. In sterile sea water metamorphosis does not take place. Buds keep swimming for weeks. Application of millimolar quantities of NH 4 + causes the buds to metamorphose within one day. The resulting animals bear hypostome and tentacles, however, only occasionally peduncle and foot. Almost all transform either completely into solitary polyp head or only the oral half of the bud developes into a head while the aboral half remains bud tissue which becomes constricted off. Under suited conditions this small bud is able to transform into a normal shaped polyp.  相似文献   

6.
Cystatin C, a cysteine protease inhibitor, was examined in the apical buds of rat incisors by immunohistochemistry, because in transition and maturation zones most of the dendritic cells in the papillary layer are anti-cystatin C-positive. Anti-cystatin C-labeled cells were sparse and localized to the proliferation and differentiation zones, constituting the apical bud of 5-week-old rat incisors. These cells were considered macrophages or dendritic cells, based on their reactivity with OX6 and ED1, as well as their ultrastructure. Basement membrane at the periphery of apical bud was also labeled by anti-cystatin C antibody. The apical buds included a few apoptotic fragments and weak reactivity with antibody to cathepsin L, a cysteine protease. Reactivity to anti-cystatin C and anti-cathepsin L antibodies was also detected in the apical bud of newborn rat incisors. These results suggest that the cystatin C-positive macrophages or dendritic cells are involved in normal incisor formation. They may be related to the clearance of apoptotic cells or protection from putative cysteine protease activity.  相似文献   

7.
Polyps of Aurelia aurita can transform into several medusae (jellyfish) in a process of sequential subdivision. During this transformation, two processes take place which are well known to play a key role in the formation of various higher metazoa: segmentation and metamorphosis. In order to compare these processes in bilaterians and cnidarians we studied the control and the kinetics of these processes in Aurelia aurita. Segmentation and metamorphosis visibly start at the polyp's head and proceed down the body column but do not reach the basal disc. The small piece of polyp which remains will develop into a new polyp. The commitment to the medusa stage moves down the body column and precedes the visible onset of segmentation by about one day. Segmentation and metamorphosis can start at the cut surface of transversely cut body columns, leading to a mirror-image pattern of sequentially developing medusae.  相似文献   

8.
伊乐藻和黑藻断枝根和芽的发生及生长研究   总被引:2,自引:0,他引:2  
为了解外来种伊乐藻的无性繁殖力、评价其生态安全性,采用插植方式比较研究了伊乐藻(Elodea nuttallii)和本土种黑藻(Hydrilla verticillata)两种沉水植物不同节数(1至4节)和不同节位断枝的不定根和新芽的发生及生长情况。通过室内4周的3次平行实验,结果表明:两者顶芽段均有形成不定根继而形成新植株的能力,而顶芽以下茎段只有本身具有腋芽的断枝才有形成新芽和不定根的能力。两者具相同节数的断枝形成不定根的百分率及根、芽长度,以具顶芽断枝的均明显高于不具顶芽断枝的,具顶芽四节断枝的不定根生成率最高达到90%以上。不具顶芽断枝形成新芽和不定根的百分率及长度随着断枝节数的增加均呈显著递增趋势,每类断枝的发芽率显著大于其生根率;伊乐藻和黑藻枝条一般分别每7节和5节具有一个腋芽,只有具腋芽断枝才能存活,因此,对不具顶芽断枝,7节和5节分别是其形成新苗所需的最短断枝长度。根和芽的长度随节位的下降大致呈递增的趋势。但是节数对形成根、芽的影响显著大于节位的影响。具顶芽断枝的顶芽的增长量和具顶芽4节断枝的生物量增量伊乐藻的高于黑藻,其余指标伊乐藻均显著低于黑藻。伊乐藻断枝的繁殖力总体上低于黑藻。    相似文献   

9.
目的观察具有单个芽体的大乳头水螅(Hydra magnipapillata)头部再生进程,探讨水螅头部结构的再生进程与芽体发育过程之间可能存在的相互作用。方法选取具有单个年幼芽体的水螅体,在水螅母体上紧贴芽体着生部位的上方进行切除手术,观察母体头部再生进程。通过ABTS细胞化学染色法检测水螅基盘分子标志物过氧化物酶的表达,观察水螅芽体基盘与母体间的结构联系。结果水螅母体伤口在手术后2h内愈合。随着再生时间的延长,出现两种不同命运的芽体发育方式。一种情况是水螅芽体基盘紧贴母体手术切口,芽体发育成熟后可正常脱离母体;在芽体脱离母体前母体头部再生进程被抑制,在芽体脱落后母体头部再生进程重新启动、且在其后48h内母体头部再生完成。另一种情况是水螅芽体基盘组织与母体手术切口不产生结构联系而向外突出生长,母体头部再生进程完全停止,芽体胃区与母体相连且芽体发育成熟后不脱离母体。结论靠近水螅母体手术伤口的年幼芽体能延迟或阻断母体头部的再生进程,而手术切口也可能干扰了发育成熟的芽体与母体脱离的正常机制。  相似文献   

10.
Signalling through fibroblast growth factors (FGFR) is essential for proper morphogenesis in higher evolved triploblastic organisms. By screening for genes induced during morphogenesis in the diploblastic Hydra, we identified a receptor tyrosine kinase (kringelchen) with high similarity to FGFR tyrosine kinases. The gene is dynamically upregulated during budding, the asexual propagation of Hydra. Activation occurs in body regions, in which the intrinsic positional value changes. During tissue displacement in the early bud, kringelchen RNA is transiently present ubiquitously. A few hours later - coincident with the acquisition of organiser properties by the bud tip - a few cells in the apical tip express the gene strongly. About 20 hours after the onset of evagination, expression is switched on in a ring of cells surrounding the bud base, and shortly thereafter vanishes from the apical expression zone. The basal ring persists in the parent during tissue contraction and foot formation in the young polyp, until several hours after bud detachment. Inhibition of bud detachment by head regeneration results in severe distortion, disruption or even complete loss of the well-defined ring-like expression zone. Inhibition of FGFR signalling by SU5402 or, alternatively, inhibition of translation by phosphorothioate antisense oligonucleotides inhibited detachment of buds, indicating that, despite the dynamic expression pattern, the crucial phase for FGFR signalling in Hydra morphogenesis lies in bud detachment. Although Kringelchen groups with the FGFR family, it is not known whether this protein is able to bind FGFs, which have not been isolated from Hydra so far.  相似文献   

11.
Adventitious buds were formed on the hypocotyls of decapitated flax seedlings. Scanning electron and light microscopic examinations of hypocotyls showed that epidermal cells divided to produce meristematic spots from which several leaf primordia were formed. Between leaf primordia and the original vascular tissues of hypocotyls, new xylem cells were formed which connected them. About 10, 30 and 60% of adventitious buds were formed on upper, middle and basal parts of hypocotyls of decapitated seedlings, respectively. Removal of apical meristem together with longer hypocotyl zero to four cm long below the apical meristem) induced higher percentage of adventitious bud formation in the remaining hypocotyl. When the entire hypocotyl was cut into 16 segments (0.25 cm each) and these segments were cultured on MS medium containing 3% sucrose and 0.8% agar, adventitious buds were mainly formed in the lowest five segments. These results suggested that there was a gradient of inhibitory factor(s) from apical to basal part of hypocotyl with respect to adventitious bud formation. Auxin transport inhibitors, morphactin and TIBA induced adventitious bud formation on intact seedlings by suppressing the basipetal movement of auxin.  相似文献   

12.
The freshwater polyp Hydra produces buds which separate from the parent. Other Hydrozoa produce branches which remain connected to the parent, thus forming a colony. Some Hydrozoa grow by means of an organ that is like a shoot apical meristem. Others display a sympodial type of growth. In this article, I propose that these different types of branches are organized by a common pattern-forming system. This system has self-organizing properties. It causes branch tip formation and is kept active in the tip when the tip finally differentiates into a hypostome of a polyp. The system does not cause structure formation directly but rather, determines a tissue property called positional value, in such a way that a gradient of values forms in the tissue of the bud or branch. The local value determines the local morphodynamic processes, including differentiation of the hypostome (highest positional value), tentacles and basal disc and of the exoskeleton pattern along the shoot. A high positional value favors the onset of a new self-organizing process and by lateral inhibition, such a process prevents the initiation of a further process in its surroundings. Small quantitative differences in the range of the signals involved determine whether a bud or a branch forms and whether monopodial and sympodial growth follows.  相似文献   

13.
Carroll AL  Quiring DT 《Oecologia》2003,136(1):88-95
Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.  相似文献   

14.
It was postulated that the release of lateral buds from apical dominance is triggered by the immediate increase in apoplastic water potential (hydrostatic pressure) that is produced by shoot decapitation and that is rapidly transmitted throughout the plant. In experiments conducted to test this hypothesis the use of a strain gauge transducer capable of measuring bud growth with an accuracy of ± 0.1 μm, showed that growth of the inhibited lateral bud at the primary leaf node of Phaseolus vulgaris (L.) ev. Canadian Wonder was initiated within 1 to 5 s following shoot decapitation or excision of the primary leaves. When only the apical bud was excised the lateral bud showed a brief, transitory growth response of ca 1 min duration, but the axillary buds of the first and second trifoliate leaves were released from inhibition. Decapitation of the shoot just below the first trifoliate leaf induced a lateral bud response characterized by three distinct stages: a) a rapid initial growth response with a mean duration of 4.9 min b) a period of arrested growth, which varied in duration from 2 min to 4 h and c) the subsequent resumption of growth.
Excision of both primary leaves induced a rapid but transitory bud response of considerably greater duration than that induced by apical bud excision. Excision of the primary leaves prior to decapitation of the shoot eliminated the phase of arrested growth, which characterized the bud response to decapitation of the intact plant. The rapidity of the bud response to both shoot decapitation and leaf excision and the interaction between the effect of these two treatments are consistent with the hypothesis that competition for water plays a major role in the correlative inhibition of lateral buds.  相似文献   

15.
The morphogenic pathway of adventitious bud and shoot regenerationat the ends of Troyer citrange epicotyl cuttings is determinedby polarity and explant orientation. In explants planted verticallywith the basal end inserted in the medium, bud formation atthe apical end occurs by direct organogenesis. Bud growth andsubsequent shoot formation is markedly increased by the additionof 6-benzyladenine (BA) to the medium. This growth regulatoralso increases the number of buds formed. When they come intocontact with the culture medium, both the apical end and thebasal end of the cuttings form a vigorous callus with many xyllaryelements, more numerous in the calli from the basal end. Inthese calli, buds differentiate by a process of indirect organogenesis.This indirect regeneration pathway requires the addition of6-benzyladenine to the medium, and the number of buds formedis higher at the apical end than at the basal end of the cuttings.This pathway of regeneration is reduced as the position of thecuttings during incubation deviates from the normal uprightvertical position. Thus, for the basal end of the cuttings,the number of buds and shoots formed is higher when the explantsare placed vertically than when they lie on the surface of themedium. For the apical end, this number is higher in explantsplaced horizontally than when inserted vertically in the mediumin an inverted position. Copyright 1999 Annals of Botany Company Troyer citrange, Citrus sinensis x Poncirus trifoliata, explant orientation, histology, hormone dependence, morphogenesis, organogenesis, polarity, xylogenesis.  相似文献   

16.
The apical bud and the axillary buds of Witloof chicory ( Cichorium intybus L. cv. Tardive d'Anvers) remain in the vegetative state if they are left on the root and maintained at 18°C. Flowering occurs in long days of 16 h after a pretreatment of either 8 weeks at 3°C, 3 days in complete anoxia at 15°C, or 4 days in the presence of ethylene (1000 ppm) at 15°C. In contrast, the adventitious buds which spread out on the root after ablation of the collar flower in a photoperiod of 16 h without particular pretreatment. The grafting of apical buds onto roots after different treatments shows that cold and ethylene act on the root, whereas anoxia acts directly at the level of the bud. It seems that the inhibition of the flowering of preformed buds (apical and axillary) stems from the collar. A hypothesis is proposed to explain this inhibition and why it is broken by cold, anoxia and ethylene.  相似文献   

17.
Buds of sweet orange, harvested from shoots of different timeof flushing and from different positions along the shoot, wereused to examine whether lack of burst of inserted buds was acharacteristic of the bud. Bursting of inserted buds was significantlyslower in buds taken from (a) older branches (b) shoots producedunder winter conditions, and (c) basal rather than apical budson the same shoot. The slowness to burst when transferred matched a tendency todormancy in buds on shoot segments grown in vitro, suggestingthat the variation in budburst was intrinsic to the bud. Budburstwas correlated with the extent of secondary bud development;the majority of buds from apical regions of the shoot had developeda secondary bud by the time of implantation, but basal budshad not. Adequate vascular connections with the host tissueswere found in both burst and unburst buds. Citrus sinensis (L.) Osbeck, sweet orange, buds, endodormancy, budding  相似文献   

18.
The role of hormones in apical dominance has been under investigation with traditional 'spray and weigh' methods for nearly 5 decades. Even though the precision of hormone content analyses in tissue has greatly improved in recent years, there have been no significant breakthroughs in our understanding of the action mechanism of this classical developmental response. Auxin appears to inhibit axillary bud outgrowth whereas cytokinins will often promote it. Conclusive evidence for a direct role of these or other hormones in apical dominance has not been forthcoming. However, promising new tools and approaches recently have begun to be utilized. The manipulation of endogenous hormone levels via the use of transgenic plants transformed with bacterial genes ( iaaM and ipt from Agrobacterium tumefaciens and iaaL from Pseudomonas syringae pv. savastanoi ) has demonstrated powerful effects of auxin and cytokinin on axillary bud outgrowth. Also, possible auxin and cytokinin involvement of rolB and C genes from Agrobacterium rhizogenes whose activity is associated with reduced apical dominance in dicotyledons has received considerable attention. The characterization of unique mRNAs and proteins in non-growing and growing lateral buds before and after apical dominance release is helping to lay the groundwork for the elucidation of signal transduction and cell cycle regulation in this response. The use of auxin-deficient, and auxin/ethylene-resistant mutants has provided another approach for analyzing the role of these hormones. The presumed eventual employment of molecular assay systems (SAUR/GH3 promoters fused with GUS reporter gene) which are presently being developed for analyzing auxin localized in lateral buds will hopefully provide a critical test for the direct auxin inhibition hypothesis.  相似文献   

19.
The effect of different temperatures on bud formation in excisedleaf fragments and in stem segments of Heloniopsis orientalis,a monocotyledonous plant, was investigated in light and in darkness.The optimal temperature for bud formation was 21?C to 25?C.16?C pretreatment for 7 to 21 days promoted bud formation inleaf segments. 30?C pretreatment for 7 days or more reducedthe number of buds in both young etiolated and mature greenleaf segments but not in young green leaf segments. In younggreen leaf segments grown in darkness, however, 30?C pretreatmentreduced the number of buds. Inhibition of bud formation dueto high temperature could not be reversed by BA. (Received November 15, 1978; )  相似文献   

20.
When budding cells of Candida albicans are starved for 20 min and then diluted into fresh nutrient medium at 37 degrees C, pH 6.7, they form mycelia by two alternative modes. For cells with small buds, the bud expands apically, resulting in a transiently tapered daughter cell. With continued growth, the daughter cell tapers into an elongated mycelium. For cells with large buds, the bud completes expansion in the budding form, the mother cell and then the daughter bud evaginate, and the evaginations grow as mycelia. The present study investigates whether the temporal and spatial changes in the zones of wall expansion during bud growth are involved in the two modes of mycelium formation. Data are presented which demonstrate that the transition circumference which determines the two modes of mycelium formation and the transition circumference at which the active apical expansion zone shuts down are both 7 micron. This exact correlation suggests that starved cells with buds with a circumference of less than 7 micron form mycelia in the tapering mode due to the reactivation of the still present apical expansion zone, and that starved cells with buds with a circumference greater than 7 micron complete bud growth by general expansion due to the absence of the apical expansion zone at the time of starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号