首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation can enhance or induce DNA curvature.   总被引:10,自引:0,他引:10       下载免费PDF全文
S Diekmann 《The EMBO journal》1987,6(13):4213-4217
Oligomers of different palindromic sequences (EcoRI, BamHI, and ClaI linkers) were ligated to form distributions of multimers. These long ligation ladders were methylated using corresponding methylases. The migration of the unmethylated as well as the methylated multimer distributions was analysed in 10% polyacrylamide gels. The migration anomaly of these sequences is interpreted in terms of the curvature of the DNA helix axis. The double-stranded oligomer dCGGAATTCCG is considerably curved in its unmodified form. Its curvature is strongly enhanced when the central dAs are methylated. This result is predicted by a model for DNA curvature. Multimers of the closely related sequence dCGGGATCCCG are straight. When methylated at the central dAs or at the most central dCs, a small curvature of the helix axis is induced. The double-stranded oligomer dCCATCGATGG is straight in its unmodified form as well as when it is methylated. Thus, DNA curvature can be induced or enhanced by methylation. However, DNA methylation at palindromic sequences seems not always to influence the linear path of the DNA helix axis.  相似文献   

2.
3.
4.
We have prepared palmitoyl sphingomyelin (PSM) analogs in which either the 2-NH was methylated to NMe, the 3-OH was methylated to OMe, or both were methylated simultaneously. The aim of the study was to determine how such modifications in the membrane interfacial region of the molecules affected interlipid interactions in bilayer membranes. Measuring DPH anisotropy in vesicle membranes prepared from the SM analogs, we observed that methylation decreased gel-phase stability and increased fluid phase disorder, when compared to PSM. Methylation of the 2-NH had the largest effect on gel-phase instability (T(m) was lowered by ~7°C). Atomistic molecular dynamics simulations showed that fluid phase bilayers with methylated SM analogs were more expanded but thinner compared to PSM bilayers. It was further revealed that 3-OH methylation dramatically attenuated hydrogen bonding also via the amide nitrogen, whereas 2-NH methylation did not similarly affect hydrogen bonding via the 3-OH. The interactions of sterols with the methylated SM analogs were markedly affected. 3-OH methylation almost completely eliminated the capacity of the SM analog to form sterol-enriched ordered domains, whereas the 2-NH methylated SM analog formed sterol-enriched domains but these were less thermostable (and thus less ordered) than the domains formed by PSM. Cholestatrienol affinity to bilayers containing methylated SM analogs was also markedly reduced as compared to its affinity for bilayers containing PSM. Molecular dynamics simulations revealed further that cholesterol's bilayer location was deeper in PSM bilayers as compared to the location in bilayers made from methylated SM analogs. This study shows that the interfacial properties of SMs are very important for interlipid interactions and the formation of laterally ordered domains in complex bilayers.  相似文献   

5.
In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so.  相似文献   

6.
Alternating (dC-dG)n regions in DNA restriction fragments and recombinant plasmids were methylated at the 5 position of the cytosine residues by the HhaI methylase. Methylation lowers the concentration of NaCl or MgCl2 necessary to cause the B-Z conformational transition in these sequences. Ionic strengths higher than physiological conditions are required to form the Z conformation when the methylated (dC-dG)n tract is contiguous with regions that do not form Z structures, in contrast to the results with the DNA polymer poly(m5dC-dG) . poly(m5dC-dG). In supercoiled plasmids containing (dC-dG)n sequences, methylation reduces the number of negative supercoils necessary to stabilize the Z conformation. Calculations of the observed free energy contributions of the B-Z junction and cytosine methylation suggest that two junctions offset the favorable effect of methylation on the Z conformation in (dC-dG)n sequences (about 29 base-pairs in length). Studies with individual methylated topoisomers demonstrate that increasing Na+ concentration up to approximately 0.2 M inhibits the formation of the Z conformation in the (m5dC-dG)n region of supercoiled plasmids. The results suggest that methylation may serve as a triggering mechanism for Z DNA formation in supercoiled DNAs.  相似文献   

7.
Epigenetic Natural Variation in Arabidopsis thaliana   总被引:5,自引:0,他引:5       下载免费PDF全文
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.  相似文献   

8.
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.  相似文献   

9.
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.  相似文献   

10.
11.
12.
Chromosomal DNA methylation patterns were determined in the grasshopper Eyprepocnemis plorans by in situ digestion with MspI and HpaII. While no methylated regions were observed in standard chromosomes, the B chromosome was methylated in the distal third of its long arm. In this zone the B chromosome had an active nucleolus organizer region (NOR) in a male carrying a centric fusion between the B and the longest autosome, and it was not methylated. This NOR, however, was never observed in the active form in nonfused B chromosome, possibly because of methylation of this B chromosome region.by J.H. Taylor  相似文献   

13.
Analysis of the enzymatic methylation of oligodeoxynucleotides containing multiple C-G groups showed that hemimethylated sites in duplex oligomers are not significantly methylated by human or murine DNA methyltransferase unless those sites are capable of being methylated de novo in the single- or double-stranded oligomers. Thus, the primary sequence of the target strand, rather than the methylation pattern of the complementary strand, determines maintenance methylation. This suggests that de novo and maintenance methylation are the same process catalyzed by the same enzyme. In addition, the study revealed that complementary strands of oligodeoxynucleotides are methylated at different rates and in different patterns. Both primary DNA sequence and the spacing between C-G groups seem important since in one case studied, maximal methylation required a specific spacing of 13 to 17 nucleotides between C-G pairs.  相似文献   

14.
15.
Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has been studied traditionally using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the “protein methylome”. They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, as well as to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases, and methyl-binding “reader” domains. These tools create a “system-level” understanding of protein methylation and integrate protein methylation into broader signaling processes.  相似文献   

16.
Bovine papillomavirus (BPV) was methylated in vitro at either the 29 HpaII sites, the 27 HhaI sites, or both. Methylation of the HpaII sites reduced transformation by the virus two- to sixfold, while methylation at HhaI sites increased transformation two- to fourfold. DNA methylated at both HpaII and HhaI sites did not differ detectably from unmethylated DNA in its efficiency of transformation. These results indicate that specific methylation sites, rather than the absolute level of methylated cytosine residues, are important in determining the effects on transformation and that the negative effects of methylation at some sites can be compensated for by methylation at other sites. BPV molecules in cells transformed by methylated BPV DNA contained little or no methylation, indicating that the pattern of methylation was not faithfully retained in these extrachromosomally replicating molecules. Methylation at the HpaII sites (but not the HhaI sites) in the cloned BPV plasmid or in pBR322 also inhibited transformation of the plasmids into Escherichia coli HB101 cells.  相似文献   

17.
The level of DNA methylation in adenovirus type 2 (Ad2) and type 12 (Ad12) DNA was determined by comparing the cleavage patterns generated by the isoschizomeric restriction enzymes HpaII and MspI. As previously reported virion DNA of Ad2 and Ad12 is not methylated. Parental or newly synthesized Ad2 DNA in productively infected human KB or HEK cells is not methylated either, nor is the integrated form of Ad2 DNA in productively infected cells. Hamster cells and Muntiacus muntjak cells are abortively infected by Ad12. We have not detected methylation of Ad12 DNA in hamster or Muntiacus muntjak cells. An inverse correlation between the level of methylation and the extent of expression of viral DNA in Ad12-transformed hamster cells has been described earlier. A similar relation has been found for the EcoRI fragment B of Ad2 DNA which is not methylated but is expressed as the Ad2 DNA-binding (72K) protein in the Ad2-transformed hamster line HE1. Conversely, the same segment is completely methylated in lines HE2 and HE3, and there is apparently no evidence for the expression of the 72K protein in these cell lines.  相似文献   

18.
19.
Liu ZJ  Maekawa M  Horii T  Morita M 《Life sciences》2003,73(15):1963-1972
The changes of methylation status of various gene promoters are a common feature of malignant cells and these changes can occur early in the progression process. Therefore, abnormal methylation can be used as cancer marker. Such studies will first require the development of a panel of methylated markers that are methylated in cancer tissues but unmethylated in normal tissues or methylated status is different between cancer tissues and normal tissues. By using methylation-specific PCR (MSP) assay method, we observed alterations in DNA methylation at the double promoter regions of the progesterone receptor (PR) gene and estrogen receptor (ERalpha) gene in various tumor cell lines. Compared with normal white blood cell, the methylation status of PRA promoter in various cancer cell lines changed from unmethylation pattern to methylation pattern. That of PRB promoter changed from both unmethylated and methylated alleles to only methylated allele. The methylation status of ERalpha-A and ERalpha-B promoter in various cancer cell lines are cell -specific. This study indicates that PR promoter methylation may be a molecular marker in various cancer detections. And the methylation status of ERalpha-A and ERalpha-B is cell-specific.  相似文献   

20.
It is shown that in vitro Escherichia coli strain B-specific modification of the replicative form of bacteriophage fd DNA is accompanied by the methylation of certain adenine moieties to form N-6-methyladenine. The reaction follows first order kinetics and saturation is reached when about four adenines are methylated per replicative form. No methyl groups are transferred to B-modified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号