首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have used conventional electron microscopy and freeze fracture to identify the morphological equivalents of the blood-aqueous barrier in the mammalian eye. These equivalents are the tight junctions that form a part of the apicolateral junctional complex between adjacent non-pigmented ciliary epithelial cells and the tight junctions present between endothelial cells of the iris vasculature. Recent investigations have begun to unravel the molecular assembly of the tight junction and some variability has been found. Our goal in the present study was to probe the ciliary epithelium and iris vascular endothelium of the rabbit eye to determine if certain molecular constituents associated with tight junctions in other tissues are also present as parts of the blood-aqueous barrier. The selected constituents were occludin, ZO-1, and a representative, adherens junction-related cadherin. Immunohistochemical and immunoelectron microscopic methods were used. The results showed that occludin was distributed exclusively at known locations of tight junctions. ZO-1 was also expressed at these locations but its distribution extended beyond that of occludin, along the adjacent membranes. Pan-cadherin was expressed ubiquitously within the ciliary epithelium and negligibly in iris vascular endothelium. Our results demonstrate that occludin and ZO-1 are integral components of the blood-aqueous barrier of the normal rabbit eye.  相似文献   

2.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

3.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

4.
Protein kinases play an important role in the regulation of epithelial tight junctions. In the present study, we investigated the role of PKCζ (protein kinase Cζ) in tight junction regulation in Caco-2 and MDCK (Madin-Darby canine kidney) cell monolayers. Inhibition of PKCζ by a specific PKCζ pseudosubstrate peptide results in redistribution of occludin and ZO-1 (zona occludens 1) from the intercellular junctions and disruption of barrier function without affecting cell viability. Reduced expression of PKCζ by antisense oligonucleotide or shRNA (short hairpin RNA) also results in compromised tight junction integrity. Inhibition or knockdown of PKCζ delays calcium-induced assembly of tight junctions. Tight junction disruption by PKCζ pseudosubstrate is associated with the dephosphorylation of occludin and ZO-1 on serine and threonine residues. PKCζ directly binds to the C-terminal domain of occludin and phosphorylates it on threonine residues. Thr403, Thr404, Thr424 and Thr438 in the occludin C-terminal domain are the predominant sites of PKCζ-dependent phosphorylation. A T424A or T438A mutation in full-length occludin delays its assembly into the tight junctions. Inhibition of PKCζ also induces redistribution of occludin and ZO-1 from the tight junctions and dissociates these proteins from the detergent-insoluble fractions in mouse ileum. The present study demonstrates that PKCζ phosphorylates occludin on specific threonine residues and promotes assembly of epithelial tight junctions.  相似文献   

5.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

6.
闭锁小带蛋白1研究进展   总被引:4,自引:0,他引:4  
闭锁小带蛋白1(ZO-1)属于膜结合鸟苷酸激酶(MAGUK)家族,存在于所有脊椎动物的紧密连接中,起中介作用。它把闭锁蛋白和细胞内骨架系统连接在一起,构成稳定的连接系统。ZO-1在维持正常胞旁屏障通透性、细胞信号转导、基因转录及调节细胞增殖分化和周期中发挥着非常巨大的作用。ZO-1基因表达沉默和蛋白缺失与肿瘤及非肿瘤疾病的发生发展密切相关。  相似文献   

7.
Tight junctions control paracellular permeability and cellpolarity. Rho GTPase regulates tight junction assembly, and ATP depletion of Madin-Darby canine kidney (MDCK) cells (an in vitro modelof renal ischemia) disrupts tight junctions. The relationship between Rho GTPase signaling and ATP depletion was examined. Rho inhibition resulted in decreased localization of zonula occludens-1 (ZO-1) and occludin at cell junctions; conversely, constitutive Rhosignaling caused an accumulation of ZO-1 and occludin at cell junctions. Inhibiting Rho before ATP depletion resulted in more extensive loss of junctional components between transfected cells thancontrol junctions, whereas cells expressing activated Rho bettermaintained junctions during ATP depletion than control cells. ATPdepletion and Rho signaling altered phosphorylation signalingmechanisms. ZO-1 and occludin exhibited rapid decreases in phosphoaminoacid content following ATP depletion, which was restored on recovery.Expression of Rho mutant proteins in MDCK cells also altered levels ofoccludin serine/threonine phosphorylation, indicating that occludin isa target for Rho signaling. We conclude that Rho GTPase signalinginduces posttranslational effects on tight junction components. Ourdata also demonstrate that activating Rho signaling protects tightjunctions from damage during ATP depletion.

  相似文献   

8.
The blood-testis barrier (BTB) separates the seminiferous epithelium into the apical and basal compartments. The BTB has to operate timely and accurately to ensure the correct migration of germ cells, meanwhile maintaining the immunological barrier. Testin was first characterized from primary Sertoli cells, it is a secretory protein and a sensitive biomarker to monitor junctions between Sertoli and germ cells. Till now, the functions of testin on BTB dynamics and the involving mechanisms are unknown. Herein, testin acts as a regulatory protein on BTB integrity. In vitro testin knockdown by RNAi caused significant damage to the Sertoli cell barrier with no apparent changes in the protein levels of several major tight junction (TJ), adhesion junction, and gap junction proteins. Also, testin RNAi caused the diffusion of two TJ structural proteins, occludin and ZO-1, diffusing away from the Sertoli cell surface into the cytoplasm. Association and colocalization between ZO-1 and occludin were decreased after testin RNAi, examined by Co-IP and coimmunofluorescent staining, respectively. Furthermore, testin RNAi induced a dramatic disruption on the arrangement of actin filament bundles and a reduced F-actin/G-actin ratio. The actin regulatory protein ARP3 appeared at the Sertoli cell interface after testin RNAi without its protein level change, whereas overexpressing testin in Sertoli cells showed no effect on TJ barrier integrity. The above findings suggest that besides as a monitor for Sertoli-germ cell junction integrity, testin is also an essential molecule to maintain Sertoli–Sertoli junctions.  相似文献   

9.
In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce approximately 150 x 10(6) spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor alpha (TNFalpha) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis.  相似文献   

10.
Multiple isoforms of the red cell protein 4.1R are expressed in nonerythroid cells, including novel 135-kDa isoforms. Using a yeast two-hybrid system, immunocolocalization, immunoprecipitation, and in vitro binding studies, we found that two 4.1R isoforms of 135 and 150 kDa specifically interact with the protein ZO-2 (zonula occludens-2). 4.1R is colocalized with ZO-2 and occludin at Madin-Darby canine kidney (MDCK) cell tight junctions. Both isoforms of 4.1R coprecipitated with proteins that organize tight junctions such as ZO-2, ZO-1, and occludin. Western blot analysis also revealed the presence of actin and alpha-spectrin in these immunoprecipitates. Association of 4.1R isoforms with these tight junction and cytoskeletal proteins was found to be specific for the tight junction and was not seen in nonconfluent MDCK cells. The amino acid residues that sustain the interaction between 4.1R and ZO-2 reside within the amino acids encoded by exons 19-21 of 4.1R and residues 1054-1118 of ZO-2. Exogenously expressed 4.1R containing the spectrin/actin- and ZO-2-binding domains was recruited to tight junctions in confluent MDCK cells. Taken together, our results suggest that 4.1R might play an important role in organization and function of the tight junction by establishing a link between the tight junction and the actin cytoskeleton.  相似文献   

11.
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase + xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and beta-catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinase-inactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calcium-induced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src.  相似文献   

12.
Occludin, the putative tight junction integral membrane protein, is an attractive candidate for a protein that forms the actual sealing element of the tight junction. To study the role of occludin in the formation of the tight junction seal, synthetic peptides (OCC1 and OCC2) corresponding to the two putative extracellular domains of occludin were assayed for their ability to alter tight junctions in Xenopus kidney epithelial cell line A6. Transepithelial electrical resistance and paracellular tracer flux measurements indicated that the second extracellular domain peptide (OCC2) reversibly disrupted the transepithelial permeability barrier at concentrations of < 5 μM. Despite the increased paracellular permeability, there were no changes in gross epithelial cell morphology as determined by scanning EM. The OCC2 peptide decreased the amount of occludin present at the tight junction, as assessed by indirect immunofluorescence, as well as decreased total cellular content of occludin, as assessed by Western blot analysis. Pulse-labeling and metabolic chase analysis suggested that this decrease in occludin level could be attributed to an increase in turnover of cellular occludin rather than a decrease in occludin synthesis. The effect on occludin was specific because other tight junction components, ZO-1, ZO-2, cingulin, and the adherens junction protein E-cadherin, were unaltered by OCC2 treatment. Therefore, the peptide corresponding to the second extracellular domain of occludin perturbs the tight junction permeability barrier in a very specific manner. The correlation between a decrease in occludin levels and the perturbation of the tight junction permeability barrier provides evidence for a role of occludin in the formation of the tight junction seal.  相似文献   

13.
Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells. Calpeptin induced disassembly of stress fibers and inhibition of Rho GTPase activity in MDCK cells. Interestingly, calpeptin augmented stress fiber formation in LLC-PK epithelial cells. Calpeptin treatment of MDCK cells resulted in a displacement of zonula occludens-1 (ZO-1) and occludin from cell-cell junctions and a loss of phosphotyrosine on ZO-1 and ZO-2, without any detectable effect on tight junction permeability. Surprisingly, calpeptin increased paracellular permeability in LLC-PK cells even though it did not affect tight junction assembly. Calpeptin also modulated adherens junction assembly in MDCK cells but not in LLC-PK cells. Calpeptin treatment of MDCK cells induced redistribution of E-cadherin and -catenin from intercellular junctions and reduced the association of p120ctn with the E-cadherin/catenin complex. Together, our studies demonstrate that calpeptin differentially regulates stress fiber and junctional complex assembly in MDCK and LLC-PK epithelial cells, indicating that these pathways may be regulated in a cell line-specific manner. calpeptin; tight junctions; adherens junctions; Rho; cadherin; p120ctn  相似文献   

14.
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the "blood-testis" barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with immunolocalization of the tight-junction-associated protein ZO-1 (zonula occludens 1). In testes from 5-day-old mice, tight junctional complexes are absent and ZO-1 is distributed generally over the apicolateral, but not basal, Sertoli cell membrane. As cytoskeletal and reticular elements characteristic of the mature junction are recruited to the developing junctions, between 7 and 14 days, ZO-1 becomes progressively restricted to tight junctional regions. Immunogold labeling of ZO-1 on Sertoli cell plasma membrane preparations revealed specific localization to the cytoplasmic surface of tight junctional regions. In the mature animal, ZO-1 is similarly associated with tight junctional complexes in the basal aspects of the epithelium. In addition, it is also localized to Sertoli cell ectoplasmic specializations adjacent to early elongating, but not late, spermatids just prior to sperm release. Although these structures are not tight junctions, they do have a similar cytoskeletal arrangement, suggesting that ZO-1 interacts with the submembrane cytoskeleton. These results show that, in the immature mouse testis, ZO-1 is present on the Sertoli cell plasma membrane in the absence of recognizable tight junctions. In the presence of tight junctions, however, ZO-1 is found only at the sites of junctional specializations associated with tight junctions and with elongating spermatids.  相似文献   

15.
The exact sites, structures, and molecular mechanisms of interaction between junction organizing zona occludence protein 1 (ZO-1) and the tight junction protein occludin or the adherens junction protein alpha-catenin are unknown. Binding studies by surface plasmon resonance spectroscopy and peptide mapping combined with comparative modeling utilizing crystal structures led for the first time to a molecular model revealing the binding of both occludin and alpha-catenin to the same binding site in ZO-1. Our data support a concept that ZO-1 successively associates with alpha-catenin at the adherens junction and occludin at the tight junction. Strong spatial evidence indicates that the occludin C-terminal coiled-coil domain dimerizes and interacts finally as a four-helix bundle with the identified structural motifs in ZO-1. The helix bundle of occludin406-521 and alpha-catenin509-906 interacts with the hinge region (ZO-1591-632 and ZO-1591-622, respectively) and with (ZO-1726-754 and ZO-1756-781) in the GuK domain of ZO-1 containing coiled-coil and alpha-helical structures, respectively. The selectivity of both protein-protein interactions is defined by complementary shapes and charges between the participating epitopes. In conclusion, a common molecular mechanism of forming an intermolecular helical bundle between the hinge region/GuK domain of ZO-1 and alpha-catenin and occludin is identified as a general molecular principle organizing the association of ZO-1 at adherens and tight junctions.  相似文献   

16.
It has been believed that epithelial cells maintain tight junctions at all times, including during cell division, to provide a continuous epithelial seal. However, changes in localization of integral tight junction proteins during cell division have not been examined. In this study, using SV40-immortalized mouse hepatocytes transfected with human Cx32 cDNA, in which tight junction strands and the endogenous tight junction proteins occludin, claudin-1, ZO-1, and ZO-2 were induced, we examined changes in localization of the tight junction proteins at all stages of cell division. All tight junction proteins were present between mitotic cells and neighboring cells throughout cell division. In late telophase, the integral tight junction proteins occludin and claudin-1, but not the cytoplasmic proteins ZO-1 and ZO-2, were concentrated in the midbody between the daughter cells and were observed at cell borders between the daugher and neighboring cells. These results indicate that the integral tight junction proteins are regulated in a different manner from the cytoplasmic proteins ZO-1 and ZO-2 during cytokinesis.  相似文献   

17.
Zonula occludens (ZO)-1 was the first tight junction protein to be cloned and has been implicated as an important scaffold protein. It contains multiple domains that bind a diverse set of junction proteins. However, the molecular functions of ZO-1 and related proteins such as ZO-2 and ZO-3 have remained unclear. We now show that gene silencing of ZO-1 causes a delay of approximately 3 h in tight junction formation in Madin-Darby canine kidney (MDCK) epithelial cells, but mature junctions seem functionally normal even in the continuing absence of ZO-1. Depletion of ZO-2, cingulin, or occludin, proteins that can interact with ZO-1, had no discernible effects on tight junctions. Rescue of junction assembly using murine ZO-1 mutants demonstrated that the ZO-1 C terminus is neither necessary nor sufficient for normal assembly. Moreover, mutation of the PDZ1 domain did not block rescue. However, point mutations in the Src homology 3 (SH3) domain almost completely prevented rescue. Surprisingly, the isolated SH3 domain of ZO-1 could also rescue junction assembly. These data reveal an unexpected function for the SH3 domain of ZO-1 in regulating tight junction assembly in epithelial cells and show that cingulin, occludin, or ZO-2 are not limiting for junction assembly in MDCK monolayers.  相似文献   

18.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   

19.
Occludin is a transmembrane protein of the tight junction with two extracellular loops. Our previous demonstration that the extracellular loops are adhesive suggested the possibility that they contribute to localizing occludin at the tight junction. To address this question, truncated forms of occludin were generated in which one or both of the extracellular loops were deleted. These constructs were expressed in both occludin-null Rat-1 fibroblasts and in MDCK epithelial cells. The patterns of sensitivity to proteinase K suggested all constructs were present on the plasma membrane and retained the normal topology. In fibroblasts, all truncated forms of occludin colocalized with ZO-1 at regions of cell-cell contact, demonstrating that even in the absence of tight junctions cytoplasmic interactions with ZOs is sufficient to cluster occludin. In MDCK cell monolayers, both full-length and occludin lacking the first extracellular loop colocalized with ZO-1 at the tight junction. In contrast, constructs lacking the second, or both, extracellular loops were absent from tight junctions and were found only on the basolateral cell surface. By freeze-fracture electron microscopic analysis, overexpression of full length occludin induced side-to-side aggregation of fibrils within the junction, while excess occludin on the lateral membrane did not form fibrils. These results suggest that the second extracellular domain is required for stable assembly of occludin in the tight junction and that occludin influences the structural organization of the paracellular barrier. Received: 26 June 2000/Revised: 25 September 2000  相似文献   

20.
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号