首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The survival of depurinated Form I SV40 DNA was studied in normal human fibroblasts and in D-complementation Xeroderma pigmentosum (XP) fibroblasts. Survival was measured with an infective center assay. Heat-acid and methyl methanesulfonate (MMS) were used as depurinating agents. After 3 hrs of depurination by heat--acid treatment, infectivity in normal cells was less than 15% of the controls compared to more than 50% for the XP D cell strains. Similar results were obtained with MMS-treated DNA. These results are contrary to expectation since apurinic endonuclease activity, which is presumed to be involved in the repair of apurinic sites, is much lower in XP D cell strains than in normal cell strains. Our results indicate that another mechanism for the repair of apurinic sites could exist.  相似文献   

2.
We studied the effect of apurinic sites on DNA replication in mouse and human cells, using parvoviruses MVM (minute virus of mice) and H-1 as probes. Although apurinic sites are efficient blocks to the replication of these single-stranded DNA viruses in vivo, depurinated parvoviruses can be reactivated if host cells have been preexposed to a subtoxic dose of UV light. The target of this conditional reactivation process is the conversion of depurinated input DNA into double-stranded replicative forms; the concomitant increase in viral mutagenesis strongly suggests that apurinic sites can be bypassed in mammalian cells.  相似文献   

3.
Using [32P]DNA alkylated with [3H]methyl methanesulfonate, depurinated by heating at 50 degrees C for various periods, then treated with sodium hydroxide, a table was constructed giving the DNA fraction soluble in 5% perchloric acid at 0 degree C as a function of the frequency of strand breaks. The alkaline treatment placed a break near each apurinic site; the apurinic sites were counted in two ways which gave consonant results: by the loss of [3H]methyl groups and by reaction with [14C]methoxyamine. The 32P label of DNA was used to measure the acid-solubility.  相似文献   

4.
An endonuclease which hydrolyzes depurinated DNA has been isolated from Phaseolus multiflorus enbryos; it has a molecular weight around 40,000. The enzyme is specific for apurinic sites; it has no action on normal DNA strands or on alkylated sites, and is without exonulcease activity. The rate of phosphoester bond hydrolysis near apurinic sites is far greater in native than in denatured DNA. The endonuclease is not inactivated by 10 mM EDTA, but is activity is however stimulated by Mg2+ or Mn2+. Its optimum pH is 7.5 to 8.0, and its optimum temperature 40degrees although, at this temperature, it is rapidly denatured; even low NaCl concentrations inhibit the enzyme activity. The endonuclease for apurinic sites of P. multiflorus is a non-histone protein of chromatin; the properties (like thermosensitivity of susceptibility to ionic strength) of the enzyme in situ, working on chromatin DNA, might be different from those described for the isolated endonuclease in homogenous aqueous solution.  相似文献   

5.
With biologically active DNA of the bacteriophage phi X174, both single and double-stranded, some physico-chemical and biological parameters of the depurination reaction are studied. It is shown that in single-stranded DNA each apurinic site is lethal, while in double-stranded RFI-DNA only about 5% of these sites are lethal. Furthermore it is concluded that the apurinic sites are formed at different rates in single- and double-stranded DNA and also the conversion into breaks of the apurinic sites is different for both forms of DNA.  相似文献   

6.
Apurinic sites cause mutations in simian virus 40   总被引:7,自引:0,他引:7  
SV40 has been used as a molecular probe to study the mutagenicity of apurinic sites (Ap) in mammalian cells. Untreated or UV-irradiated monkey kidney cells were transfected with depurinated DNA from the temperature-sensitive tsB201 SV40 late mutant which grows normally at the permissive temperature of 33 degrees C but which is unable to grow at 41 degrees C. Phenotypic revertants were screened at 41 degrees C for their ability to grow at the restrictive temperature and the mutation frequency was calculated in the viral progeny. Ap sites were introduced into DNA by heating at 70 degrees C under acid conditions (pH 4.8). This treatment induces one Ap site per SV40 genome per 15 min of heating as measured by alkaline denaturation or by treatment with the T4-encoded UV-specific endonuclease which possesses Ap-endonuclease activity. The experiments reported here show that Ap sites strongly decrease virus survival with a lethal hit corresponding roughly to 3 Ap lesions per SV40 genome, and indicate for the first time that apurinic sites produced by heating are highly mutagenic in animal cells. UV irradiation of the host cells 24 h prior to transfection with depurinated DNA did not modify the mutation frequency in the virus progeny.  相似文献   

7.
The endonuclease activity specific for apurinic sites in DNA was detected in barley embryos. The enzyme was partially purified. It reveals high activity on partially depurinated DNA but low or nil activity on intact and alkylated DNA. The method used for the detection of enzyme activity was based on the changes in the sedimentation velocity of substrate DNA in neutral sucrose gradients with 80 % formamide.  相似文献   

8.
An endonuclease which hydrolyzes depurinated DNA has been purified from extracts of Bacillus subtilis cells. The endonuclease is a monomeric protein and has a molecular weight of around 56,000. The enzyme is specific for apurinic sites in double-stranded DNA, has a pH optimum at 8.0, and is slightly stimulated with 50 mM NaCl but completely inhibited with 500 mM NaCl. It requires no divalent cations and is insensitive to EDTA; it has no associated exonuclease. These properties are very similar to those of Escherichia coli endonuclease IV, which is also insensitive to EDTA and has no exonuclease activity, and very different from those of the main endonuclease for apurinic sites (endonuclease IV) of the same bacterium.  相似文献   

9.
Upon base composition analysis, oligonucleotides which are labeled at the 3'-terminus with fluorescein or biotin generate an additional, late eluting peak in the HPLC chromatogram. Investigation of this effect revealed the haptens acted as apurinic sites, and phosphodiesterase cleavage of the phosphate bond between the upstream nucleotide and apurinic site is inhibited. Extension of this work with a base-stable apurinic site inserted into all possible junctures of 5'-TGAC-3' tetramers showed this to be a general effect. As a consequence of this work, acid-catalyzed depurination resulting in apurinic sites can be monitored in oligonucleotide synthesis.  相似文献   

10.
A major variety of "spontaneous" genomic damage is endogenous generation of apurinic sites. Depurination rates vary widely across genomes, occurring with higher frequency at "depurination hot spots." Recently, we discovered a site-specific self-catalyzed depurinating activity in short (14-18 nucleotides) DNA stem-loop-forming sequences with a 5'-G(T/A)GG-3' loop and T·A or G·C as the first base pair at the base of the loop; the 5'-G residue of the loop self-depurinates at least 10(5)-fold faster than random "spontaneous" depurination at pH 5. Formation of the catalytic intermediate for self-depurination in double-stranded DNA requires a stem-loop to extrude as part of a cruciform. In this study, evidence is presented for self-catalyzed depurination mediated by cruciform formation in plasmid DNA in vitro. Cruciform extrusion was confirmed, and its extent was quantitated by digestion of the plasmid with single strand-specific mung bean endonuclease, followed by restriction digestion and sequencing of resulting mung bean-generated fragments. Appearance of the apurinic site in the self-depurinating stem-loop was confirmed by digestion of plasmid DNA with apurinic endonuclease IV, followed by primer extension and/or PCR amplification to detect the endonuclease-generated strand break and identify its location. Self-catalyzed depurination was contingent on the plasmid being supercoiled and was not observed in linearized plasmids, consistent with the presence of the extruded cruciform in the supercoiled plasmid and not in the linear one. These results indicate that self-catalyzed depurination is not unique to single-stranded DNA; rather, it can occur in stem-loop structures extruding from double-stranded DNA and therefore could, in principle, occur in vivo.  相似文献   

11.
A quick and convenient assay for depurination and AP endonuclease activities has been developed. (The term 'AP endonuclease' refers to a nuclease that acts on apurinic and probably apyrimidinic sites on DNA.) It is based on the observation that different topological forms of DNA, such as open circular DNA and covalently closed circular DNA, bind different amounts of the fluorescent intercalator ethidium bromide, and can therefore be distinguished by their fluorescence. This assay has been used to measure AP endonuclease activity in 22 repair-deficient mutants of Saccharomyces cerevisiae. All 22 had normal or nearly normal AP endonuclease activity. The AP endonuclease activity was partially characterized.  相似文献   

12.
An endonuclease specific for apurinic sites in double stranded DNA has been purified 373-fold from the nuclei of mouse plasmacytoma cells (line MPC-11). The enzyme is free of any detectable amounts of aspecific nucleases. The enzyme does not act on methylated or OsO4-treated DNA. However, high doses of UV-light and gamma-rays render the DNA slightly susceptible to endonucleolytic attack, which is believed to be due to depurination of depyrimidination caused by the treatment. The molecular weight of the enzyme is determined to be 28,000 and its apparent Km of the purified enzyme is calculated to be 2.7 nM apurinic sites. The activity is not absolutely dependent upon the presence of Mg2+ in the assay mixture although metal chelating agents such as sodium citrate and EDTA abolish the activity completely. The nuclease was stimulated by moderate concentrations of potassium chloride optimizing at 50 mM, and higher concentrations inhibiting the activity. The pH optimun for the reaction was 9.5.  相似文献   

13.
The presence of apurinic/apyrimidinic (AP) sites in cell genomes is known to be toxic and mutagenic. These lesions are therefore repaired in cells by efficient enzymatic systems. However, a report (Nakamura and Swenberg, Cancer Res. 59 (1999) 2522-2526) indicates an unexpected high rate of endogenous apurinic/apyrimidinic (AP) sites in genomic DNA in mammalian tissues. The technology used does not allow the authors to distinguish between intact AP sites and 3'cleaved AP sites. The corresponding values range between 2 and 4 sites per million of nucleotides in various human and rat tissues. Using a modified alkaline elution method we show here that the stationary level of intact AP sites is about 0.16 per million of nucleotides in leukemic mouse L1210 cells.  相似文献   

14.
E L Ivanov 《Genetika》1991,27(1):5-12
The subject of this review are molecular mechanisms and specificity of mutagenesis induced by apurinic/apyrimidinic (AP) sites representing a characteristic group of so called non-coding DNA lesions. The data available suggest that efficiency and specificity of AP sites-induced mutations depend, primarily, on genome structural organization. This is manifested in existence of DNA sequences highly prone to depurination/depyrimidination as well as in the ability of specific DNA regions to adopt potentially mutagenic conformations. The latter leads to mutations as consequence of AP sites' repair. Secondly, the AP sites-induced mutagenesis depends on functional state of genome, on the ability of replicative/repair cell apparatus to carry out some specific forms of mutagenic DNA repair, in particular, to bypass non-coding DNA lesions under conditions of SOS repair.  相似文献   

15.
16.
Two species of apurinic/apyrimidinic (AP) endonuclease have been purified approximately 400-fold from extracts of Drosophila embryos. AP endonuclease I, which flows through phosphocellulose columns, has an apparent subunit molecular weight of 66,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas AP endonuclease II, which is retained by phosphocellulose, has a subunit molecular weight of 63,000. The molecular weight determinations were made possible in part by the finding that both Drosophila enzymes, along with Escherichia coli endonuclease IV, cross-react with an antibody prepared toward a human AP endonuclease (Kane, C. M., and Linn, S. (1981) J. Biol. Chem. 256, 3405-3414). The nature of phosphodiester bond breaks produced by the two partially purified AP endonucleases from Drosophila have been investigated. Nicks introduced into partially depurinated PM2 DNA by Drosophila AP endonuclease I did not support DNA synthesis by E. coli DNA polymerase I, whereas nicks created by AP endonuclease II were able to support DNA synthesis, but at a rate far less than that observed for nicks introduced by E. coli endonuclease IV. The priming activity of DNA incised by either of the Drosophila enzymes can be enhanced, however, by an additional incubation with E. coli endonuclease IV, which is known to cleave depurinated DNA on the 5'-side of an apurinic site. These results suggest that the Drosophila enzymes cleave depurinated DNA on the 3'-side of the apurinic site. This suggestion was strengthened by the observation that the combined action of AP endonuclease II and E. coli endonuclease IV resulted in the removal of [32P]dAMP from partially depyrimidinated [dAMP-5'-32P,uracil-3H]poly(dA-dT). Taken together, these results propose that Drosophila AP endonuclease II produces 3'-deoxyribose and 5'-phosphomonoester nucleotide termini. Conversely, the absolute inability to detect priming activity for DNA cleaved by AP endonuclease I alone suggested a different mechanism, possibly the formation of a deoxyribose-3'-phosphate terminus. When apurinic DNA cleaved by AP endonuclease I was subsequently treated with bacterial alkaline phosphatase, DNA synthesis was now detected at levels similar to that observed for AP endonuclease II alone. Additionally, DNA nicked by AP endonuclease I was susceptible to 5'-end labeling by polynucleotide T4 kinase without prior phosphomonoesterase treatment. These results suggest that AP endonuclease I forms deoxyribose 3'-phosphate and 5'-OH termini upon cleaving depurinated DNA.  相似文献   

17.
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair.  相似文献   

18.
An endonuclease specific for depurinated native DNA was isolated and partially purified from extracts of barley leaves. The procedure included streptomycin sulphate precipitation, ammonium sulphate fractionation, phosphocellulose, hydroxyapatite and Sephadex G-150 chromatography. Purity of the resulting enzyme was determined by gel electrophoresis and gel chromatography and specificity by testing the activity on intact and depurinated bacterial DNAs. At lower concentrations, the enzyme is specific for DNA containing apurinic sites. At higher concentrations, however, it degrades DNA in a non-specific manner. The nuclease has a pH optimum at 7.6, and a molecular weight of about 18000.  相似文献   

19.
T Suzuki  S Ohsumi    K Makino 《Nucleic acids research》1994,22(23):4997-5003
Products formed from defined oligodeoxyribonucleotide tetramers (oligonucleotides) by depurination at pH 5.0 and 90 degrees C followed by chain breakage at the resulting apurinic sites (AP sites) were assigned by reversed phase HPLC. Through kinetic analysis, rate constants of depurination and subsequent chain breakage reactions were measured. Depurination of the oligonucleotides with purine bases locating at the terminal positions was several times faster than those with purines at the internal ones. The pKa values for the N7 of the G residues and the activation energies of the depurination were essentially independent of the position of the bases. The frequency factor was found to be responsible for the observed difference of the depurination rates. In contrast, the chain breakage by beta-elimination was several times faster for the AP sites formed at the internal positions than those at the 5'-terminal positions. It is suggested that an electron withdrawing phosphate group attached to the 5'-side of an AP site facilitates the chain cleavage.  相似文献   

20.
A Price 《FEBS letters》1992,300(1):101-104
The 5'----3' exonuclease activity of E. coli DNA polymerase I and a related enzyme activity in mammalian cell nuclei, DNase IV, are unable to catalyse the excision of free deoxyribose-phosphate from apurinic/apyrimidinic (AP) sites incised by an AP endonuclease. Instead, the sugar phosphate residue is slowly released as part of a short oligonucleotide. These products have been characterised as dimers and trimers by comparison of their retention time on reverse-phase HPLC with reference compounds prepared by acid depurination of a dinucleotide, trinucleotide and tetranucleotide containing a 5'-terminal dAMP residue. The similar mode of action of these enzymes at 5'-incised AP sites provides an explanation for the minority of repair patches larger than one nucleotide observed when AP sites are repaired by E. coli and mammalian cell extracts in vitro and strengthens the functional analogy between the two activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号