首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

2.
Functionally separate intracellular Ca2+ stores in smooth muscle   总被引:8,自引:0,他引:8  
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.  相似文献   

3.
Ma J  Pan Z 《Cell calcium》2003,33(5-6):375-384
Store-operated Ca2+ entry represents an important mechanism for refilling of a depleted intracellular-reticulum Ca2+ store following sustained activation of the IP3 receptor or ryanodine receptor RyR/Ca2+ release channel in the endoplasmic/sarcoplasmic reticulum (ER/SR). Recent studies have demonstrated the existence of store-operated Ca2+ channel (SOC) in muscle cells, whose activation process appears to be coupled to conformational changes of the RyR. Regulation of the plasma membrane (PM)-resided SOC by the SR-located RyR requires an integrity of the junctional membrane structure between SR and PM. Proteins that interact with RyR or influence the Ca2+ buffering capacity in the ER or SR lumen also participate in the activation process of SOC. Calsequestrin (CSQ) and calreticulin (CRT) are SR/ER-resident proteins, with highly negative charged regions at the carboxyl-terminal end that exhibit high buffering capacity for luminal Ca2+. CSQ and CRT not only modulate the intracellular Ca2+ release process but also might provide retrograde signals to regulate the function of SOC. The functional interplay between CSQ, RyR and SOC may serve essential roles of Ca2+ signaling in muscle contraction and development. A tight link between the expression of CRT and operation of SOC exist in certain cancer cells, where the reduced sensitivity to apoptosis may correlate with the altered function of SOC.  相似文献   

4.
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.  相似文献   

5.
In mouse luteinized-granulosa cells (MGLC), ATP induces an increase in intracellular Ca2+ concentration by stimulating phospholipase C (PLC) associated with purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ from intracellular stores. In this study, we examined the cross-talk between the ryanodine receptors (RyR) and IP3 receptors (IP3R) in response to ATP in MGLC. Specifically, the effect of RyR modulators on ATP response was examined. The results showed that ATP-induced intracellular calcium elevation was abolished by inhibitors of the RyR, such as dantrolene (25 microM) and ryanodine (80 microM). When the MGLC were stimulated with activators of RyR, 2 microM ryanodine and 10 mM caffeine, the ATP-elicited response was decreased. These actions were independent of IP3 production stimulated by ATP. Hence, ATP-induced intracellular Ca2+ mobilization involves the coordinated action of both types of calcium release channels (CRCs). Using fluorescent probes, it was shown that IP3R is uniformly distributed throughout the cell; in contrast, RyR is mainly found around the nuclei. It is concluded that the IP3R and the RyR are functionally associated, and both play a role in the pattern of Ca2+ increase observed during purinergic stimulation of MGLC. This coupling may provide a highly efficient amplification mechanism for ATP stimulation of Ca2+ mobilization.  相似文献   

6.
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.  相似文献   

7.
Amyotrophic lateral sclerosis is characterized by motoneuron degeneration, in which glutamate-induced cell death is thought to play a pathogenic role. This excitotoxic process is mediated by cytosolic Ca2+ overload. The glutamatergic ionotropic channel molecules, which constitute a major route of Ca2+ entry, were present on cultured spinal motoneurons. Using ratio RT-PCR, the relative presence in isolated motoneurons of the GluR subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor was evaluated. GluR1 and GluR2 mRNAs were present abundantly, while GluR3 and GluR4 mRNAs were much less abundant. The relative amount of mRNAs encoding the different protein isoforms responsible for Ca2+ uptake into the internal stores and for controlled release of Ca2+ from these stores was also determined. For the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), only the SERCA2b class 4 splice variant was found. The inositol 1,4,5-trisphosphate receptor (IP3R) mRNAs were mainly transcribed from the IP3RI and IP3RII genes. Heterogeneity was also observed for the ryanodine receptors (RyR) as the RyR1, RyR2 and RyR3 mRNAs were present.  相似文献   

8.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

9.
Transmembrane redox sensor of ryanodine receptor complex   总被引:8,自引:0,他引:8  
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca(2+) stores and regulate Ca(2+) entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca(2+) channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca(2+) release channels and the fidelity of Ca(2+) release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca(2+) release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028-33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca(2+) channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca(2+) release from stores.  相似文献   

10.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

11.
The cellular and molecular processes underlying the regulation of ryanodine receptor (RyR) Ca(2+) release in smooth muscle cells (SMCs) are incompletely understood. Here we show that FKBP12.6 proteins are expressed in pulmonary artery (PA) smooth muscle and associated with type-2 RyRs (RyR2), but not RyR1, RyR3, or IP(3) receptors (IP(3)Rs) in PA sarcoplasmic reticulum. Application of FK506, which binds to FKBPs and dissociates these proteins from RyRs, induced an increase in [Ca(2+)](i) and Ca(2+)-activated Cl(-) and K(+) currents in freshly isolated PASMCs, whereas cyclosporin, an agent known to inhibit calcineurin but not to interact with FKBPs, failed to induce an increase in [Ca(2+)](i). FK506-induced [Ca(2+)](i) increase was completely blocked by the RyR antagonist ruthenium red and ryanodine, but not the IP(3)R antagonist heparin. Hypoxic Ca(2+) response and hypoxic vasoconstriction were significantly enhanced in FKBP12.6 knockout mouse PASMCs. FK506 or rapamycin pretreatment also enhanced hypoxic increase [Ca(2+)](i), but did not alter caffeine-induced Ca(2+) release (SR Ca(2+) content) in PASMCs. Norepinephrine-induced Ca(2+) release and force generation were also markedly enhanced in PASMCs from FKBP12.6 null mice. These findings suggest that FKBP12.6 plays an important role in hypoxia- and neurotransmitter-induced Ca(2+) and contractile responses by regulating the activity of RyRs in PASMCs.  相似文献   

12.
Hajnóczky G  Csordás G  Yi M 《Cell calcium》2002,32(5-6):363-377
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.  相似文献   

13.
Malignant hyperthermia (MH) and central core disease (CCD) are disorders of skeletal muscle Ca2+ homeostasis that are linked to mutations in the type 1 ryanodine receptor (RyR1). Certain RyR1 mutations result in an MH-selective phenotype (MH-only), whereas others result in a mixed phenotype (MH + CCD). We characterized effects on Ca2+ handling and excitation-contraction (EC) coupling of MH-only and MH + CCD mutations in RyR1 after expression in skeletal myotubes derived from RyR1-null (dyspedic) mice. Compared to wild-type RyR1-expressing myotubes, MH + CCD- and MH-only-expressing myotubes exhibited voltage-gated Ca2+ release (VGCR) that activated at more negative potentials and displayed a significantly higher incidence of spontaneous Ca2+ oscillations. However, maximal VGCR was reduced only for MH + CCD mutants (Y4795C, R2435L, and R2163H) in which spontaneous Ca2+ oscillations occurred with significantly longer duration (Y4795C and R2435L) or higher frequency (R2163H). Notably, myotubes expressing these MH + CCD mutations in RyR1 exhibited both increased [Ca2+]i and reduced sarcoplasmic reticulum (SR) Ca2+ content. We conclude that MH-only mutations modestly increase basal release-channel activity in a manner insufficient to alter net SR Ca2+ content ("compensated leak"), whereas the mixed MH + CCD phenotype arises from mutations that enhance basal activity to a level sufficient to promote SR Ca2+ depletion, elevate [Ca2+]i, and reduce maximal VGCR ("decompensated leak").  相似文献   

14.
Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel involved in various cellular signaling. Type 3 IP3R (IP3R3) retains ligand-gated Ca2+ channel properties differing from other subtypes in terms of IP3-binding affinity and regulation of its channel activity by effector molecules. In this study, we found the natural Pro335 --> Leu polymorphism of mouse IP3R3 between BALB/c and C57BL/6J. We investigated the functional differences between Pro335IP3R3 and Leu335IP3R3 with purified receptors reconstituted into proteoliposomes as well as with soluble ligand binding domains. Pro335IP3R3 exhibited significantly higher IP3-binding affinity and IP3-induced Ca2+ release than those of Leu335IP3R3 in both forms of the receptor. Moreover, the polymorphic change caused differences in the effect of external Ca2+ on IP3-induced Ca2+ release. The Pro335 --> Leu substitution alters the conformation of soluble ligand binding domain as revealed by intrinsic fluorescence and circular dichroism spectra with or without Ca2+. The results indicate that the polymorphism of IP3R3 causes changes in receptor function, presumably affecting intracellular Ca2+ signaling.  相似文献   

15.
mRNA and protein analyses have previously shown that the diaphragm expresses two ryanodine receptor isoforms: RyR1 and RyR3. RyR1 is the main Ca2+-releasing pathway in this muscle type. We now report the conducting, gating, and immunological properties of the native and purified forms of the less abundant RyR3 channel. The conductance of this native Ca2+-release channel was 330 pS in 50 mM/250 mM trans/cis CsCH3SO3. It was activated by Ca2+ concentrations of 1-1000 microM, and did not inactivate at mM concentrations of Ca2+. Both isoforms were purified by either a sucrose density gradient or immunoprecipitation as > 450 kDa proteins on SDS-PAGE. Western blot analysis confirmed the presence of RyR1 and RyR3, which displayed conductances of 740 +/- 30 and 800 +/- 25 pS, respectively, in 250 mM KCl. We thus provide evidence that one form of the diaphragm SR Ca2+-release channels may be classified as RyR3, with gating properties different from those of the well-characterized RyR1 and RyR2 isoforms.  相似文献   

16.
A model of the functional release unit (FRU) in rat cardiac muscle consisting of one dihydropyridine receptor (DHPR) and eight ryanodine receptor (RyR) channels, and the volume surrounding them, is formulated. It is assumed that no spatial [Ca2+] gradients exist in this volume, and that each FRU acts independently. The model is amenable to systematic parameter studies in which FRU dynamics are simulated at the channel level using Monte Carlo methods with Ca2+ concentrations simulated by numerical integration of a coupled system of differential equations. Using stochastic methods, Ca(2+)-induced Ca2+ release (CICR) shows both high gain and graded Ca2+ release that is robust when parameters are varied. For a single DHPR opening, the resulting RyR Ca2+ release flux is insensitive to the DHPR open duration, and is determined principally by local sarcoplasmic reticulum (SR) Ca2+ load, consistent with experimental data on Ca2+ sparks. In addition, single RyR openings are effective in triggering Ca2+ release from adjacent RyRs only when open duration is long and SR Ca2+ load is high. This indicates relatively low coupling between RyRs, and suggests a mechanism that limits the regenerative spread of RyR openings. The results also suggest that adaptation plays an important modulatory role in shaping Ca2+ release duration and magnitude, but is not solely responsible for terminating Ca2+ release. Results obtained with the stochastic model suggest that high gain and gradedness can occur by the recruitment of independent FRUs without requiring spatial [Ca2+] gradients within a functional unit or cross-coupling between adjacent functional units.  相似文献   

17.
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)-linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 muM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below approximately 0.5 mM.  相似文献   

18.
Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5'-rapid amplification of cDNA 5'-end (5'-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3'-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5'-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels.  相似文献   

19.
The biological activity of nitric oxide (NO) and NO-donors has been extensively investigated yet few studies have examined those of nitroxyl (HNO) species even though both exist in chemical equilibrium but oxidize thiols by different reaction mechanisms: S-nitrosation versus disulfide bond formation. Here, sodium trioxodinitrate (Na2N2O3; Angeli's salt; ANGS) was used as an HNO donor to investigate its effects on skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. At steady-state concentrations of nanomoles/L, HNO induced a rapid Ca2+ release from sarcoplasmic reticulum (SR) vesicles then the reducing agent dithiothreitol (DTT) reversed the oxidation by HNO resulting in Ca2+ re-uptake by SR vesicles. With RyR1 channel proteins reconstituted in planar bilayers, HNO added to the cis-side increased the open probability (Po) from 0.056+/-0.026 to 0.270+/-0.102 (P<0.005, n=4) then DTT (3 mM) reduced Po to 0.096+/-0.040 (P<0.01, n=4). In parallel experiments, the time course of HNO production from ANGS was monitored by EPR and UV spectroscopy and compared with the rate of SR Ca2+ release indicating that picomolar concentrations of HNO triggered SR Ca2+ release. Controls showed that the hydroxyl radical scavenger, phenol did not alter ANGS-induced SR Ca2+ release, indicating that hydroxyl radical production from ANGS did not account for Ca2+ release from the SR. The findings indicate that HNO is a more potent activator of RyR1 than NO and that HNO activation of RyRs may contribute to NO's activation of RyRs and to the therapeutic effects of HNO-releasing prodrugs in heart failure.  相似文献   

20.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号