首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATP-binding cassette (ABC) proteins have two nucleotide-binding domains (NBDs) that work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. In particular, it is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or opening of the dimers, with the NBDs remaining in contact during the hydrolysis cycle. We studied a prototypical ABC NBD, the Methanococcus jannaschii MJ0796, using spectroscopic techniques. We show that fluorescence from a tryptophan positioned at the dimer interface and luminescence resonance energy transfer between probes reacted with single-cysteine mutants can be used to follow NBD association/dissociation in real time. The intermonomer distances calculated from luminescence resonance energy transfer data indicate that the NBDs separate completely following ATP hydrolysis, instead of opening. The results support ABC protein NBD association/dissociation, as opposed to constant-contact models.  相似文献   

2.
Dissociation of yeast enolase into active monomers   总被引:1,自引:0,他引:1  
S Keresztes-Nagy  R Orman 《Biochemistry》1971,10(13):2506-2508
  相似文献   

3.
4.
  • 1.1. Analysis of the Soret spectra of hemoglobins A, S and F has been used to determine the extent of heme exposure and release from these hemoglobins in the presence of several solvent perturbants.
  • 2.2. Oxyhemoglobin S unfolding in the presence of either urea or propyl urea resulted in greater heme exposure and release than either oxyhemoglobins A or F.
  • 3.3. Methemoglobin formation resulted in lower denaturation midpoints for each hemoglobin compared to the reduced oxyhemoglobin state; methemoglobin F had the lowest denaturation midpoint under isothermal denaturing conditions.
  • 4.4. Rate of heme exposure was greater for oxyhemoglobin S than oxyhemoglobin A in the presence of 200 μM the anionic detergent sodium dodecyl sulfate.
  • 5.5. Evidence for increased levels of heme release in hemoglobin S may be related to the greater tendency of sickled red cell membranes to undergo lipid oxidation.
  相似文献   

5.
A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.  相似文献   

6.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

7.
The dissociation of apo- and metal-bound human copper-zinc superoxide dismutase (SOD1) dimers induced by the chaotrope guanidine hydrochloride (GdnHCl) or the reductant Tris(2-carboxyethyl)phosphine (TCEP) has been analyzed using analytical ultracentrifugation. Global fitting of sedimentation equilibrium data under native solution conditions (without GdnHCl or TCEP) demonstrate that both the apo- and metal-bound forms of SOD1 are stable dimers. Sedimentation velocity experiments show that apo-SOD1 dimers dissociate cooperatively over the range 0.5-1.0 M GdnHCl. In contrast, metal-bound SOD1 dimers possess a more compact shape and dissociate at significantly higher GdnHCl concentrations (2.0-3.0 M). Reduction of the intrasubunit disulfide bond within each SOD1 subunit by 5-10 mM TCEP promotes dissociation of apo-SOD1 dimers, whereas the metal-bound enzyme remains a stable dimer under these conditions. The Cys-57 --> Ser mutant of SOD1, a protein incapable of forming the intrasubunit disulfide bond, sediments as a monomer in the absence of metal ions and as a dimer when metals are bound. Taken together, these data indicate that the stability imparted to the human SOD1 dimer by metal binding and the formation of the intrasubunit disulfide bond are mediated by independent molecular mechanisms. By combining the sedimentation data with previous crystallographic results, a molecular explanation is provided for the existence of different SOD1 macromolecular shapes and multiple SOD1 dimeric species with different stabilities.  相似文献   

8.
9.
Rhodopsin (Rho) is a G protein-coupled receptor that initiates phototransduction in rod photoreceptors. High expression levels of Rho in the disc membranes of rod outer segments and the propensity of Rho to form higher oligomeric structures are evident from atomic force microscopy, transmission electron microscopy, and chemical cross-linking experiments. To explore the structural and functional properties of Rho in n-dodecyl-beta-maltoside, frequently used to purify heterologously expressed Rho and its mutants, we used gel filtration techniques, blue native gel electrophoresis, and functional assays. Here, we show that in micelles containing n-dodecyl-beta-maltoside at concentrations greater than 3 mM, Rho is present as a single monomer per detergent micelle. In contrast, in 12 mM 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS), micelles contain mostly dimeric Rho. The cognate G protein transducin (Gt) appears to have a preference for binding to the Rho dimer, and the complexes fall apart in the presence of guanosine 5'-3-O-(thio)triphosphate. Cross-linked Rho dimers release the chromophore at a slower rate than monomers and are much more resistant to heat denaturation. Both Rho(*) monomers and dimers are capable of activating Gt, and both of them are phosphorylated by Rho kinase. Rho expressed in HEK293 cells is also readily cross-linked by a bifunctional reagent. These studies provide an explanation of how detergent influences the oligomer-dimermonomer equilibrium of Rho and describe the functional characterization of Rho monomers and dimers in detergent.  相似文献   

10.
Most (90 to 95%) human plasma fibronectin (PFn) molecules exist as 450-kDa disulfide-rich dimers comprised of two major types of subunits (A, 220 kDa; B, 215 kDa) that are joined near the COOH terminus by two disulfide bonds. Smaller PFn species (Zone II; 190-235 kDa) consist mainly of monomers and/or a monomeric subunit joined covalently to a smaller peptide remnant presumably derived by proteolysis of a parent 450-kDa molecule. A relatively simple and selective method for preparing functionally active, partially reduced monomeric fibronectin subunits (PR-PFn) by limited and selective reduction of dimeric plasma fibronectin (PFn) has been developed. PR-PFn was prepared by incubating PFn in phosphate-buffered saline, pH 7.4, for 2 h at room temperature in the presence of 17 mM dithiothreitol (DTT). Following S-carboxymethylation or S-carboxyamidomethylation, the material was passed through a gelatin-Sepharose column and nonbinding material was discarded; gelatin-bound material was eluted using a 0 to 2 M KSCN gradient. Residual dimeric species (10-20%) could be separated from monomers in high yield by gel-sieving chromatography on a Sepharose 6B-Cl in the presence of a chaotropic salt, 0.3 M KSCN. Most new SH groups (74-81%) in that fraction of PR-PFn binding to gelatin were localized in proteolytic fragments containing the COOH terminus, thus suggesting that selective cleavage of the interchain disulfide bridges had taken place. The binding affinity of PR-PFn to gelatin- and fibrin-Sepharose was lower than that of dimeric PFn, but the same as that of Zone II PFn and other monomeric gelatin-binding proteolytic derivatives. PR-PFn also bound to heparin-Sepharose and promoted cell attachment and spreading. We conclude that PR-PFn monomers possess the same functional activities as those of the parent chains.  相似文献   

11.
12.
13.
Peptide chain synthesis of human hemoglobins A and A2   总被引:8,自引:0,他引:8  
  相似文献   

14.
15.
16.
17.
Nine dihydroartemisinin acetal dimers (614) with diversely functionalized linker units were synthesized and tested for in vitro antiprotozoal, anticancer and antimicrobial activity. Compounds 6, 7 and 11 [IC50: 3.0–6.7 nM (D6) and 4.2–5.9 nM (W2)] were appreciably more active than artemisinin (1) [IC50: 32.9 nM (D6) and 42.5 nM (W2)] against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of the malaria parasite, Plasmodium falciparum. Compounds 10, 13 and 14 displayed enhanced anticancer activity in a number of cell lines compared to the control drug, doxorubicin. The antifungal activity of 7 and 12 against Cryptococcus neoformans (IC50: 0.16 and 0.55 μM, respectively) was also higher compared to the control drug, amphotericin B. The antileishmanial and antibacterial activities were marginal. A number of dihydroartemisinin acetal monomers (1517) and a trimer (18) were isolated as byproducts from the dimer synthesis and were also tested for biological activity.  相似文献   

18.
Hemoglobin A (HbA) and hemoglobin F (HbF) dynamic structures have been studied using spin-label ESR spectra analysis technique, which permits quantitative separation of slow macromolecular rotation (described by rotational correlation time, tau c) and fast anisotropic nitroxide radical motion (described by the 'order parameter', S). The hardly restricted motion of the maleimide spin-label reflects the overall macromolecular rotation and small dynamic structure differences between HbA and HbF were observed (tau c is equal to 26 and 27 ns, respectively). On the other hand, the dynamic equilibrium of the iodoacetamide spin-label demonstrates significant differences between beta- and gamma-chain C-terminus flexibility. Thus, there are different states of alpha,beta and alpha,gamma intersubunit contacts which may be expected to determine the different O2 affinity of HbA and HbF. The antibiotic, chloramphenicol, strongly affects the O2 affinity and the Hill constant of HbF, and also provides detectable changes of gamma-subunit C-terminus flexibility (tau c changes from 20 ns to 27 ns after chloramphenicol treatment of HbF), while the HbA tetramer structure remains almost unaffected. The HbF domain structure rearrangements are accompanied by a decrease of the steric restriction of the spin-label motion (S changes from 0.75 to 0.72).  相似文献   

19.
20.
1. Incubation of prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate : oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) with H2O2 leads to a decrease of 50% in the specific activity of enzyme tetramers, followed by dissociation into inactive dimers in which the monomers are covalently cross-linked by S-S bridge formation. 2. Incubation of the enzyme with K3Fe(CN)6 leads to a comparable decrease in activity of enzyme tetramers. Addition of urea leads to dissociation into inactive dimers with similarly cross-linked monomers. 3. Removal of the dissociating agent leads to reassociation of cross-linked dimers to tetramers and to about 50% reactivation. The enzyme is further reactivated by preincubation with dithiothreitol. 4. Dissociation of the enzyme with dithiothreitol, urea or LiCl, or at low pH (4.15) produces inactive monomers, which could not be reassociated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号