首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
HGF regulates the development of cortical pyramidal dendrites   总被引:8,自引:0,他引:8  
Although hepatocyte growth factor (HGF) and its receptor tyrosine kinase MET are widely expressed in the developing and mature central nervous system, little is known about the role of MET signaling in the brain. We have used particle-mediated gene transfer in cortical organotypic slice cultures established from early postnatal mice to study the effects of HGF on the development of dendritic arbors of pyramidal neurons. Compared with untreated control cultures, exogenous HGF promoted a highly significant increase in dendritic growth and branching of layer 2 pyramidal neurons, whereas inactivation of endogenous HGF with function-blocking, anti-HGF antibody caused a marked reduction in size and complexity of the dendritic arbors of these neurons. Furthermore, pyramidal neurons transfected with an MET dominant-negative mutant receptor likewise had much smaller and less complex dendritic arbors than did control transfected neurons. Our results indicate that HGF plays a role in regulating dendritic morphology in the developing cerebral cortex.  相似文献   

4.
Branco T  Häusser M 《Neuron》2011,69(5):885-892
Cortical pyramidal neurons receive thousands of synaptic inputs arriving at different dendritic locations with varying degrees of temporal synchrony. It is not known if different locations along single cortical dendrites integrate excitatory inputs in different ways. Here we have used two-photon glutamate uncaging and compartmental modeling to reveal a gradient of nonlinear synaptic integration in basal and apical oblique dendrites of cortical pyramidal neurons. Excitatory inputs to the proximal dendrite sum linearly and require precise temporal coincidence for effective summation, whereas distal inputs are amplified with high gain and integrated over broader time windows. This allows distal inputs to overcome their electrotonic disadvantage, and become surprisingly more effective than proximal inputs at influencing action potential output. Thus, single dendritic branches can already exhibit nonuniform synaptic integration, with the computational strategy shifting from temporal coding to rate coding along the dendrite.  相似文献   

5.
Detailed morphometrical and corresponding electrotonic characteristics on three classes of cat superior colliculus (SC) neurons have been derived. The sample of cells selected for analysis comprised ascending projection neurons (APNs), inter-layer neurons (ILNs) and tecto-reticulo-spinal neurons (TRSNs) recorded intracellularly and stained with HRP. Superficial SC neurons (APNs, ILNs) could be attached to the allo- and idiodendritic type while deep layer neurons (TRSNs) belong to the isodendritic type. For each neuron, the branching pattern, lengths and diameters of the dendritic trees were determined. These data served as input to the computer program "DENDRIT" from which electrotonic membrane and transfer properties were calculated. Both the morphometrical data and the electronic properties underline the contrasting features of superficial vs deep layer neurons in the SC. Our results support the hypothesis that on the neuron level a close relationship between dendritic pattern and neuron function might exist.  相似文献   

6.
Using steady-state cable analysis as derived by Rall, electrotonic properties of the dendritic trees of the tonic stretch receptor neuron of the spiny lobster, Panulirus interruptus,have been examined. By directly measuring the somatic input resistance and by visualizing the dendritic trees of this neuron by backfilling the axon with cobalt, the electrotonic properties of the dendritic trees have been derived. The calculated membrane resistivity is 800-3600 -cm 2. Voltage and current transfer functions were calculated for (a) single dendritic tips the size observed in the cobalt preparations and (b) for processes 2 µm or smaller, as observed in electron microscopy. Current transfer to the soma was high in both cases (greater than 80%). Voltage transfer was 22% for large and 4% for small dendrites. When a more natural simultaneous conductance change at the tips of all major dendrites was modeled, voltage transfer was 84% and current transfer 56%. But the dynamic range of the cell (rheobase to saturation) is well-predicted by varying the simultaneous inputs, not by scaling up a single input, thus illustrating that convenient indices of electrotonic properties may not prove useful in appreciating the integrative properties of a neuron.  相似文献   

7.
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.  相似文献   

8.
The way in which the dimensions of neurons change during postembryonic development has important effects on their electrotonic structures. Theoretically, only one mode of growth can conserve the electrotonic structures of growing neurons without employing changes in membrane electrical properties. If the dendritic diameters of a neuron increase as the square of the increase in dendritic lengths, then the neuron's electrotonic structure is conserved. We call this special mode of allometric growth isoelectrotonic growth. In this study we compared the developmental changes in morphology of two identified invertebrate neurons with theoretical growth curves. We found that a cricket neuron, MGI, grows isoelectrotonically and thereby preserves its electrotonic properties. In contrast, the crayfish neuron, LG, grows in a nearly isometric manner resulting in an increase in its electrotonic length.  相似文献   

9.
Dendritic shaft (Zd) and spine (Zsp) input impedances were computed numerically for sites on hippocampal neurons, using a segmental format of cable calculations. The Zsp values for a typical spine appended onto a dendritic shaft averaged less than 2% higher than the Zd values for the adjacent dendritic shaft. Spine synaptic inputs were simulated by a brief conductance transient, which possessed a time integral of 12 X 10(-10)S X ms. This input resulted in an average peak spine response of 20 mV for both dentate granule neurons and CA1 pyramidal cells. The average spine transient was attenuated less than 2% in conduction across the spine neck, considering peak voltage, waveform parameters, and charge transfer. The spine conductance transient resulted in an average somatic response of 100 microV in the dentate granule neurons, because of passive electrotonic propagation. The same input transient was also applied to proximal and distal sites on CA1 pyramidal cells. The predicted responses at the soma demonstrated a clear difference between the proximal and distal inputs, in terms of both peak voltage and waveform parameters. Thus, the main determinant of the passive propagation of transient electrical signals in these neurons appears to be dendritic branching rather than signal attenuation through the spine neck.  相似文献   

10.
'Non-synaptic' mechanisms in seizures and epileptogenesis   总被引:8,自引:0,他引:8  
The role of 'non-synaptic' mechanisms (i.e. those mechanisms that are independent of active chemical synpases) in the synchronization of neuronal activity during seizures and their possible contribution to chronic epileptogenesis are summarized. These 'non-synaptic' mechanisms include electrotonic coupling through gap junctions, electrical field effects (i.e. ephaptic transmission), and ionic interactions (e.g. increases in the extracellular concentration of K(+)). Several lines of evidence indicate that granule cells and pyramidal cells of the hippocampus, and probably other cortical neurons, can generate synchronized electrical activity after active chemical synaptic transmission has been blocked. This synchronized activity is sensitive to alterations in the size of the extracellular space, thus suggesting that electrical field effects and ionic mechanisms contribute to this synchronized activity. Recent studies also indicate that 'non-synaptic' synchronization is quite prominent early in development. Electrophysiological data from hippocampal and neocortical slices have led to a re-interpretation of the fast prepotentials (i.e. partial spikes) recorded in cortical pyramidal cells, suggesting that they may not be due to dendritic spike generation. Improvement in freeze-fracture ultrastructural techniques have led to a re-assessment of previous data on gap junctions in the nervous system and opened new approaches to the quantitative analysis and characterization of gap junctions on glia and neurons. Finally, new methods of dye/tracer coupling have the potential to provide a more rigorous basis for evaluating gap junctions and electrotonic communication between neurons in the mammalian central nervous system. Therefore, recent data continue to suggest that gap junctions and electrotonic coupling play an important role in neural integration, although additional studies using new techniques will be needed to address some of the controversial issues that have arisen over the last several decades.  相似文献   

11.
Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas.  相似文献   

12.
The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.  相似文献   

13.
Wang Z  Xu NL  Wu CP  Duan S  Poo MM 《Neuron》2003,37(3):463-472
Information processing in the neuron requires spatial summation of synaptic inputs at the dendrite. In CA1 pyramidal neurons of the hippocampus, a brief period of correlated pre- and postsynaptic activity, which induces long-term potentiation (LTP) or long-term depression (LTD), results in a persistent increase or decrease in the linearity of spatial summation, respectively. Such bidirectional modification of the summation property is specific to the modified input and reflects localized dendritic changes involving I(h) channels and NMDA receptors. Thus, correlated pre- and postsynaptic activity alters not only the strength of the activated input but also its dendritic integration with other inputs.  相似文献   

14.
15.
The active dendritic conductances shape the input-output properties of many principal neurons in different brain regions, and the various ways in which they regulate neuronal excitability need to be investigated to better understand their functional consequences. Using a realistic model of a hippocampal CA1 pyramidal neuron, we show a major role for the hyperpolarization-activated current, Ih, in regulating the spike probability of a neuron when independent synaptic inputs are activated with different degrees of synchronization and at different distances from the soma. The results allowed us to make the experimentally testable prediction that the Ih in these neurons is needed to reduce neuronal excitability selectively for distal unsynchronized, but not for synchronized, inputs.  相似文献   

16.
The functional geometry of the reconstructed dendritic arborization of Purkinje neurons is the object of this work. The combined effects of the local geometry of the dendritic branches and of the membrane mechanisms are computed in passive configuration to obtain the electrotonic structure of the arborization. Steady-currents applied to the soma and expressed as a function of the path distance from the soma form different clusters of profiles in which dendritic branches are similar in voltages and current transfer effectiveness. The locations of the different clusters are mapped on the dendrograms and 3D representations of the arborization. It reveals the presence of different spatial dendritic sectors clearly separated in 3D space that shape the arborization in ordered electrical domains, each with similar passive charge transfer efficiencies. Further simulations are performed in active configuration with a realistic cocktail of conductances to find out whether similar spatial domains found in the passive model also characterize the active dendritic arborization. During tonic activation of excitatory synaptic inputs homogeneously distributed over the whole arborization, the Purkinje cell generates regular oscillatory potentials. The temporal patterns of the electrical oscillations induce similar spatial sectors in the arborization as those observed in the passive electrotonic structure. By taking a video of the dendritic maps of the membrane potentials during a single oscillation, we demonstrate that the functional dendritic field of a Purkinje neuron displays dynamic changes which occur in the spatial distribution of membrane potentials in the course of the oscillation. We conclude that the branching pattern of the arborization explains such continuous reconfiguration and discuss its functional implications.  相似文献   

17.
18.
This study describes a detailed cable model of neuronal structure, which can predict the effects of discrete transient inputs. Neurons in in vitro hippocampal slices (CA1 and CA3 pyramidal cells and dentate granule neurons; n = 4 each) were physiologically characterized and stained with horseradish peroxidase (HRP). The HRP morphology was approximated with numerous small segments. The cable model included both these segments and spatially dispersed dendritic spines. The transient response function at the soma of the segmental model was numerically derived, and charging responses to simulated current inputs were computed. These simulations were compared with the physiological charging responses from the somatic penetrations, using an analysis of the charging time constants (tau i) and intercepts. The time constant ratio (tau 0/tau 1) did not significantly differ between the observed and simulated responses. A second index of comparison was the equivalent cylinder electrotonic length (L), which was derived using only the tau i values and their intercepts. The L values also did not differ significantly between the observed and simulated transients and averaged 0.91 length constant. Thus, using criteria based only on analysis of charging responses, the segmental cable model recreated accurately the observed transients at the soma. The equivalent cylinder model (with a lumped soma) could also adequately simulate the observed somatic transients, using the same criteria. However, the hippocampal neurons (particularly the pyramidal cells) did not appear to satisfy the equivalent cylinder assumption anatomically. Thus, the analysis of somatic charging transients alone may not be sufficient to discriminate between the two models of hippocampal neurons. Anatomical evidence indicates that, particularly for discrete dendritic inputs, the detailed segmental model may be more appropriate than the equivalent cylinder model.  相似文献   

19.
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.  相似文献   

20.
Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号