首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Various mutations in the pectin catabolic pathway of Erwinia chrysanthemi were isolated by selection of Mu-lac insertions, resulting in expression of the lac genes inducible by pectin degradation products. This approach allowed us to isolate lacZ fusions with the genes pelC, pelD, ogl and pem, encoding pectate lyases PLc and PLd, oligogalacturonate lyase and pectin methytesterase, respectively. Moreover, we obtained mutations affecting the regulation of pectinolytic enzymes; a locus called peel appeared to be involved in induction of pectate tyases and pectin methylesterase. A second locus, called pect, may encode an activator protein acting on pectate lyase production. Both peel and pecL expression are induced in the presence of pectic polymers. The expression of the pem gene was studied in more detail by analysis of the pem-lacZ fusions. The expression of pem appears to be controlled by the negative regulatory gene kdgR, which controls alt the genes involved in pectin degradation (pem, pel, ogl, kduD, kduf, kdgK, kdgA). This study confirmed that 2-keto-3-deoxy-gluconate is a key intermediate for the induction of the pectin catabolic pathway. The three genes pem, pelD and pecl were localized in the same region, near the ade-377 marker on the genetic map of the E. chrysanthemi strain 3937. The pem gene was located more precisely on an 18kb DNA fragment containing the pelADE cluster. However, this 18 kb DNA fragment did not complement the pecl mutation. The pecL mutations were located near the ile-2 marker on the genetic map of E. chrysanthemi strain 3937.  相似文献   

4.
5.
After 24 h of incubation with only purified pectate lyase isolated from Bacillus pumilus DKS1 (EF467045), the weight loss of the ramie fibre was found to be 25%. To know the catalytic residue of pectate lyase the pel gene encoding a pectate lyase from the strain Bacillus pumilus DKS1 was cloned in E. coli XL1Blue and expressed in E. coli BL21 (DE3) pLysS. The pel gene was sequenced and showed 1032 bp length. After purification using CM-Sepharose the enzyme showed molecular weight of 35 kDa and maximal enzymatic activity was observed at 60°C and a pH range of 8.5–9.0. Both Ca2+ and Mn2+ ions were required for activity on Na-pectate salt substrates, while the enzyme was strongly inhibited by Zn2+ and EDTA. The deduced nucleotide sequence of the DKS1 pectate lyase (EU652988) showed 90% homology to pectate lyases from Bacillus pumilus SAFR-032 (CP000813). The 3D structure as well as the catalytic residues was predicted using EasyPred software and Catalytic Site Atlas (CSA), respectively. Site directed mutagenesis confirmed that arginine is an essential catalytic residue of DKS1 pectate lyase.  相似文献   

6.
7.
Pectate lyase was purified approximately 29-fold to electrophoretic homogeneity from Pseudomonas marginalis N6301. A pectate lyase (PL; EC4.2.2.2) gene of the strain was cloned and expressed in Escherichiacoli. The nucleotides of the PL gene (pel) were sequenced. An open reading frame that encodes a polypeptide (molecular weight: 40,812) composed of 380 amino acids including a 29 amino acid signal peptide was assigned. The structural gene of pel consisted of 1140 base pairs. The nucleotide sequence of the 5′-flanking region of pel showed a consensus sequence of the promoter region of the pectin lyase gene (pnl) in P. marginalis N6301, a Pribnow box, and a ribosome binding site as found in E. coli.  相似文献   

8.
Summary Erwinia chrysanthemi (EC16) produces four extracellular pectate lyases (Pels) that are resolved by their isoelectric pH (pI): Pel A, pI 4.2; Pel B, pI 8.8; Pel C, pI 9.0; and Pel E, pI 10.0. To investigate the organization of the pel genes and to compare the properties of the enzymes, the cognate structural genes were isolated from an EC16 cosmid library. Physical analysis of the Pel+ plasmids revealed that pelA and pelE were present on a 8.2 kb DNA segment, while pelB and pelC were present on a 5.9 kb DNA segment. These four pel genes were resolved by subcloning or Tn5 mutagenesis. The properties of each Pel, obtained from the Escherichia coli periplasm, were determined. The pIs of the enzymes were identical to those of the EC16 extracellular enzymes. While each Pel was of the endo-type, differences among them were noted in the quantities of the various reaction products. Pel E was found to be most effective in causing maceration and inducing electrolyte loss and cell death in potato tuber tissue, followed by Pel B and Pel C. In contrast to these basic Pels, the acidic enzyme, Pel A, did not macerate plant tissue or induce electrolyte loss and cell death. These findings are discussed in the context of the plant pathogenicity of E. chrysanthemi.  相似文献   

9.
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell‐wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell‐wall composition to reinforce this defensive barrier remains unknown. The enzyme 13–allene oxide synthase (13–AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13–AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13–AOS enzymes. Indeed, transgenic potato plants lacking both St13–AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound‐responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild‐type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell‐wall pectin composition between wild‐type and CoAOS1/2 plants. Importantly, wild‐type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.  相似文献   

10.
Erwinia chrysanthemi 3937 secretes into the external medium several pectinolytic enzymes, among which are eight isoenzymes of the endo-cleaving pectate lyases: PelA, PelB, PelC, PelD, and PelE (family 1); PelI (family 4); PelL (family 3); and PelZ (family 5). In addition, one exo-cleaving pectate lyase, PelX (family 3), has been found in the periplasm of E. chrysanthemi. The E. chrysanthemi 3937 gene kdgC has been shown to exhibit a high degree of similarity to the genes pelY of Yersinia pseudotuberculosis and pelB of Erwinia carotovora, which encode family 2 pectate lyases. However, no pectinolytic activity has been assigned to the KdgC protein. After verification of the corresponding nucleotide sequence, we cloned a longer DNA fragment and showed that this gene encodes a 553-amino-acid protein exhibiting an exo-cleaving pectate lyase activity. Thus, the kdgC gene was renamed pelW. PelW catalyzes the formation of unsaturated digalacturonates from polygalacturonate or short oligogalacturonates. PelW is located in the bacterial cytoplasm. In this compartment, PelW action could complete the degradation of pectic oligomers that was initiated by the extracellular or periplasmic pectinases and precede the action of the cytoplasmic oligogalacturonate lyase, Ogl. Both cytoplasmic pectinases, PelW and Ogl, seem to act in sequence during oligogalacturonate depolymerization, since oligomers longer than dimers are very poor substrates for Ogl but are good substrates for PelW. The estimated number of binding subsites for PelW is three, extending from subsite -2 to +1, while it is probably two for Ogl, extending from subsite -1 to +1. The activities of the two cytoplasmic lyases, PelW and Ogl, are dependent on the presence of divalent cations, since both enzymes are inhibited by EDTA. In contrast to the extracellular pectate lyases, Ca2+ is unable to restore the activity of PelW or Ogl, while several other cations, including Co2+, Mn2+, and Ni2+, can activate both cytoplasmic lyases.  相似文献   

11.
The pectate lyase gene pelA from alkaliphilic Bacillus licheniformis strain 14A was cloned and sequenced. The nucleotide sequence corresponded to an open reading frame of 1,026 bp that codes for a 39 amino acid signal peptide and a mature protein with a molecular mass of 33,451 Da. The mature PelA showed significant homology to other pectate lyases belonging to polysaccharide lyase family 1, such as enzymes from different Bacillus spp. and Erwinia chrysanthemi. The pelA gene was expressed in Escherichia coli as a recombinant fusion protein containing a C-terminal His-tag, allowing purification to near homogeneity in a one-step procedure. The values for the kinetic parameters K m and V max of the fusion protein were 0.56 g/l and 51 µmol/min, respectively. The activity of purified PelAHis was inhibited in the presence of excess substrate. Characterization of product formation revealed unsaturated trigalacturonate as the main product. The yields of unsaturated trigalacturonic acids were further examined for the substrates polygalacturonic acid, citrus pectin and sugar-beet pectin.  相似文献   

12.
Erwinia carotovora Er produces three extra-cellular pectate lyases (PL I, II, and III). The gene for peetate lyase II (pelII) of E. carotovora Er was cloned and expressed both in Escherichia coli and E. carotovora Er. Localization experiments in E. coli showed that PL II was exclusively in the cytoplasmic space, while PL II was excreted into the culture medium. The complete nucleotides of the pelII gene were sequenced and found to include one open reading frame of 1122 bp coding for a protein of 374 amino acid residues. From comparison of the N-terminal amino acid sequence between the purified PL II and the deduced protein from the nucleotide sequence we reached the conclusion that the mature protein is composed of 352 amino acids with a calculated molecular weight of 38,169 and is preceded by a typical signal sequence of 22 amino acid residues. PL II had 90.1 % and 82.9% homologies with PL I and PL III in amino acid sequence, respectively.  相似文献   

13.
Erwinia chrysanthemi causes soft rot on various plants. The maceration of plant tissues is mainly due to the action of endopectate lyases. The E. chrysanthemi strain 3937 produces eight endopectate lyases (PelA, PelB, PelC, PelD, PelE, PelI, PelL and PelZ) that are secreted by the Out pathway. The necrotic response elicited by the wild-type E. chrysanthemi strain on tobacco leaves is due to an extracellular protein secreted by the Out machinery. Purification of the active factor revealed that it corresponds to a pectate lyase presenting immunological cross-reaction with PelI. Analysis of pelI and out mutants indicated that the necrosis-inducing pectate lyase results from a post-translational modification of PelI occurring extracellularly both in culture media and in planta . This modification consists of the cleavage of 97 N-terminal amino acids by the extracellular proteases of E. chrysanthemi . The enzymatic properties of the maturated form, PelI-3, are not, or only weakly, modified. However, this maturation gives rise to a small size and basic form that is active as a defence elicitor in plants.  相似文献   

14.
15.
To incite a systemic disease on its specific host, Saintpaulia ionantha, the soft-rot Erwinia chrysanthemi strain 3937 requires a functional high affinity iron transport system. Under iron starvation, strain 3937 produces chrysobactin, a novel catechol-type siderophore. Recent advances in the biochemistry and genetics of iron assimilation in E. chrysanthemi are reported. Analysis of leaf intercellular fluid from healthy and infected plants suggests: (i) leaf vessels in which the bacteria develop during infection would be low in free iron and (ii) chrysobactin could be produced in planta.  相似文献   

16.
A dynamic mathematical model has been developed and validated to describe the synthesis of pectate lyases (Pels), the major virulence factors in Dickeya dadantii. This work focuses on the simultaneous modeling of the metabolic degradation of pectin by Pel enzymes and the genetic regulation of pel genes by 2-keto-3-deoxygluconate (KDG), a catabolite product of pectin that inactivates KdgR, one of the main repressors of pel genes. This modeling scheme takes into account the fact that the system is composed of two time-varying compartments: the extracellular medium, where Pel enzymes cleave pectin into oligomers, and the bacterial cytoplasm where, after internalization, oligomers are converted to KDG. Using the quasi-stationary state approximations, the model consists of some nonlinear differential equations for which most of the parameters could be estimated from the literature or from independent experiments. The few remaining unknown parameters were obtained by fitting the model equations against a set of Pel activity data. Model predictions were verified by measuring the time courses of bacterial growth, Pel production, pel mRNA accumulation, and pectin consumption under various growth conditions. This work reveals that pectin is almost totally consumed before the burst of Pel production. This paradoxical behavior can be interpreted as an evolutionary strategy to control the diffusion process so that as soon as a small amount of pectin is detected by the bacteria in its surroundings, it anticipates more pectin to come. The model also predicts the possibility of bistable steady states in the presence of constant pectin compounds.  相似文献   

17.
Pectate lyases are plant virulence factors that degrade the pectate component of the plant cell wall. The enzymes share considerable sequence homology with plant pollen and style proteins, suggesting a shared structural topology and possibly functional relationships as well. The three-dimensional structures of two Erwinia chrysanthemi pectate lyases, C and E, have been superimposed and the structurally conserved amino acids have been identified. There are 232 amino acids that superimpose with a root-mean-square deviation of 3 A or less. These amino acids have been used to correct the primary sequence alignment derived from evolution-based techniques. Subsequently, multiple alignment techniques have allowed the realignment of other extracellular pectate lyases as well as all sequence homologs, including pectin lyases and the plant pollen and style proteins. The new multiple sequence alignment reveals amino acids likely to participate in the parallel beta helix motif, those involved in binding Ca2+, and those invariant amino acids with potential catalytic properties. The latter amino acids cluster in two well-separated regions on the pectate lyase structures, suggesting two distinct enzymatic functions for extracellular pectate lyases and their sequence homologs.  相似文献   

18.
While pectate lyases are major parasitism factors in plant-parasitic nematodes, there is little information on the variability of these genes within species and their utility as pathotype or host range molecular markers. We have analysed polymorphisms of pectate lyase 2 (pel-2) gene, which degrades the unesterified polygalacturonate (pectate) of the host cell-wall, in the genus Globodera. Molecular variability of the pel-2 gene and the predicted protein was evaluated in populations of G. rostochiensis, G. pallida, G.mexicana” and G. tabacum. Seventy eight pel-2 sequences were obtained and aligned. Point mutations were observed at 373 positions, 57% of these affect the coding part of the gene and produce 129 aa replacements. The observed polymorphism does not correlate either to the pathotypes proposed in potato cyst nematodes (PCN) or the subspecies described in tobacco cyst nematodes. The trees reveal a topology different from the admitted species topology as G. rostochiensis and G. pallida sequences are more similar to each other than to G. tabacum. Species-specific sites, potentially applicable for identification, and sites distinguishing PCN from tobacco cyst nematodes, were identified. As both G. rostochiensis and G. pallida display the same host range, but distinct from G. tabacum, which cannot parasitize potato plants, it is tempting to speculate that pel-2 genes polymorphism may be implicated in this adaptation, a view supported by the fact that no active pectate lyase 2 was found in G.mexicana”, a close relative of G. pallida that is unable to develop on cultivated potato varieties.  相似文献   

19.
A marine Antarctic psychrotolerant bacterium (strain ANT/505), isolated from sea ice-covered surface water from the Southern Ocean, showed pectinolytic activity on citrus pectin agar. The sequencing of the 16S rRNA of isolate ANT/505 indicates a taxonomic affiliation to Pseudoalteromonas haloplanktis. The supernatant of this strain showed three different pectinolytic activities after growth on citrus pectin. By activity screening of a genomic DNA library of isolate ANT/505 in Escherichia coli, two different pectinolytic clones could be isolated. Subcloning and sequencing revealed two open reading frames (ORF) of 1,671 and 1,968 nt, corresponding to proteins of 68 and 75 kDa, respectively. The deduced amino acid sequence of the two ORFs showed homology to pectate lyases from Erwinia chrysanthemi and Aspergillus nidulans. The pectate lyases contain signal peptides of 17 and 26 amino acids that were correctly processed after overexpression in E. coli BL21. Both enzymes were purified by anionic exchange chromatography. Maximal enzymatic activities for both pectate lyases were observed at 30 degrees C and a pH range of 9 to 10. The Km values of both lyases for pectate and citrus pectin were 1 g l(-1) and 5 g l(-1), respectively. Calcium was required for activity on pectic substrates, whereas the addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These two enzymes represent the first pectate lyases isolated and characterized from a cold-adapted marine bacterium.  相似文献   

20.
In contrast to the closely related bacteria Erwinia chrysanthemi, the kDu mutant of Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号