首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural examination of tobacco mosaic virus-induced local lesions growing in Datura stramonium leaves is carried out. It is demonstrated that, in the central area of the lesions, the cell response to viral invasion is not uniform. Most cells exhibited an acute hypersensitive reaction (HR) and underwent rapid and complete necrosis. However, some cells, despite considerable virus accumulation and immediate contact with completely collapsed cells, maintained a certain degree of structural integrity. Analysis performed showed that the proportion of collapsed and uncollapsed cells in the lesion centre 3 to 5 days after infection essentially did not change. These data suggest that the absence of HR in some cells in the lesion centre is not due to an early stage of infection but is likely caused by cell tolerance of the virus.  相似文献   

2.
M. Kopp  P. Geoffroy  B. Fritig 《Planta》1983,157(2):180-189
Tobacco varieties carrying the N gene from Nicotiana glutinosa respond to infection by Tobacco Mosaic Virus (TMV) by forming necrotic local lesions (hypersensitive reaction), thereby localizing the infection. In this study, infected mesophyll leaf tissue of N. tabacum Samsun NN was treated with the non-permeating, non-metabolizable carbohydrate mannitol. The local lesions developed under iso-osmotic conditions (0.28 M mannitol), though with a slight delay and with a reduced rate of growth, as compared to those on attached leaves. At increasing plasmolysing concentrations of mannitol, necrotization was progressively inhibited, but not completely suppressed. The leaf tissue produced tiny translucent zones, with a delay that increased between the virus inoculation and application of the plasmolytica. Activities of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and O-methyltransferase (OMT, EC 2.1.1.6) are strongly stimulated in hypersensitively reacting tobacco and were used as biochemical markers in the present study. This study was done to determine whether the inhibitory effect of plasmolysis on the elicitation of the hypersensitive response is due to a decrease in virus spread, resulting from the rupture of plasmodesmata or, at least in part, to metabolic alterations of the host cell exposed to osmotic stress. Since necrotization is normally preceded by intense virus multiplication, the inhibitory effects found for early applications (i.e., before local lesion appearance) of plasmolytica could easily be related to an inhibition of virus spread which also occurred in similarly treated leaf tissue of the systemically reacting variety Samsun. The most meaningful data were obtained from mannitol treatments performed on leaf tissue already carrying local lesions, i.e., in which the elicitor(s) and/or the factor(s) of necrotization were already operating. Under iso-osmotic conditions, we found the stimulated PAL and OMT activities characteristic of the hypersensitive response. At plasmolysing concentrations of mannitol, we observed the counteracting effects of two different mechanisms controlling the phenylpropanoid enzymes. Floating the leaf material on the liquid medium induced an ageing-like effect with a continuous increase in enzyme activities that was independent on osmotic pressure and sensitive to cycloheximide. At the same time, the stimulated enzyme activities related to hypersensitivity decreased at a rate related to osmotic pressure. Since PAL and OMT of tobacco leaves are long-lived enzymes, it is likely that the increased de novo synthesis of the enzymes was suppressed by plasmolysis while their degradation and/or inactivation was maintained or even increased. From these results it is concluded that the apparent inhibition of the hypersensitive response by plasmolysis is due to both a decrease in virus spead (artificially caused by the rupture of connections between cells) and to drastic metabolic alterations of the host cell exposed to high osmotic pressure.  相似文献   

3.
4.
A superoxide-producing xanthine oxidoreductase was isolated and quantified after polyacrylamide disc gel electrophoresis of tobacco leaf extracts. The results obtained indicate that, like uricase activity, a slight increase in tobacco xanthine oxidase activity takes place in the susceptible interaction with tobacco mosaic virus (TMV). In contrast, out of three hypersensitive tobacco cultivars tested, only two showed the same slight increase m activity during the late stage of hypersensitive response.
Allopurinol [4-hydroxypyrazolo(3,4-d)pyrimidine] a specific and potent in vitro and in vivo inhibitor of xanthine oxidoreductase, applied to tobacco plants by root absorption, starting about 8 days before the inoculation, did not affect the hypersensitive response but weakened the hypersensitivity-linked virus localization and promoted the movement of a certain amount of TMV particles and/or virus related material from necrotic lesions which induced systemic necrotic symptoms in uninoculated leaves. However, due to the inefficacy of allopurinol in preventing necrotic lesion development, all results are consistent with the hypothesis that xanthine oxidoreductase, the first enzyme in purine oxidative degradation, plays only a secondary role during induction of primary hypersensitive cell death in TMV infected tobacco leaves.  相似文献   

5.
Although extensive data has described the key role of salicylic acid (SA) in signaling pathogen-induced disease resistance, its function in physiological processes related to cell death is still poorly understood. Recent studies have explored the requirement of SA for mounting the hypersensitive response (HR) against an invading pathogen, where a particular cell death process is activated at the site of attempted infection causing a confined lesion. Biochemical data suggest that SA potentiates the signal pathway for HR by affecting an early phosphorylation-sensitive step preceding the generation of pro-death signals, including those derived from the oxidative burst. Accordingly, the epistatic relationship between cell death and SA accumulation, analyzed in crosses between lesion-mimic mutants (spontaneous lesion formation) and the transgenic nahG line (depleted in SA) places the SA activity in a feedback loop downstream and upstream of cell death. Exciting advances have been made in the identification of cellular protective functions and cell death suppressors that might operate in HR. Moreover, the spatio-temporal patterns of the SA accumulation (non-homogeneous distribution, biphasic kinetics) described in some HR lesions, may also reveal important clues for unraveling the complex cellular network that tightly balances pro- and anti-death functions in the hypersensitive cell death.  相似文献   

6.
Mutant tobacco plants deficient for class I beta-1,3-glucanase (GLU I) are decreased in their susceptibility to virus infection. This is correlated with delayed virus spread, a reduction in the size exclusion limit of plasmodesmata and increased cell-wall deposition of the beta-1,3-glucan callose. To further investigate a role of GLU I during cell-to-cell movement of virus infection, we inserted the GLU I coding sequence into TMV for overexpression in infected cells. Compared with the size of local lesions produced on plants infected with virus expressing either an enzymatically inactive GLU I or a frameshift mutant of the gene, the size of local lesions caused by infection with virus expressing active GLU I was consistently increased. Viruses expressing antisense GLU I constructs led to lesions of decreased size. Similar effects were obtained for virus spread using plants grown at 32 degrees C to block the hypersensitive response. Together, these results indicate that enzymatically active GLU I expressed in cells containing replicating virus can increase cell-to-cell movement of virus. This supports the view that GLU I induced locally during infection helps to promote cell-to-cell movement of virus by hydrolyzing callose. Moreover, our results provide the first direct evidence that a biological function of a plant beta-1,3-glucanase depends on its catalytic activity.  相似文献   

7.
During the development of a zosteriform rash, which occurs after flank inoculation of BALB/c mice with herpes simplex virus, clinically normal skin becomes infected via nerve endings. This is analogous to the final step in the development of a recrudescent lesion, which may occur after reactivation of latent virus. Therefore, the zosteriform reaction has potential as a model with which to study the modification of such a recrudescent infection by immune processes. Using an adoptive transfer system, we confirmed that immune lymph node cells are potent in accelerating the clearance of virus from the primary site of replication (the inoculation site). This effect was T cell dependent. However, if injection of the same cell population was delayed until ganglionic infection was established, the appearance of the zosteriform rash was not prevented, and the virus titer recovered from the lower flank was not reduced. Immunoperoxidase studies showed that virus is at first highly localized to the epidermis after it emerges from nerves. As determined by conventional histology, little cellular infiltration was seen until clinical lesions were apparent. These observations indicate that recrudescent lesions appear in the presence of cell populations normally associated with rapid virus clearance; cellular immune mechanisms may be rendered ineffective owing to the lack of recruitment to the site of recrudescence until tissue breakdown instigates an inflammatory response.  相似文献   

8.
When inoculated into sensitive tobacco Xanthi-nn plants, the crucifer and garlic-infecting Tobacco mosaic virus (TMV-Cg) induces local necrotic lesions that resemble those seen in the hypersensitive response (HR) of resistant tobacco plants. However, unlike these, tobacco Xanthi-nn plants do not become resistant to infection and the virus spreads systemically causing a severe disease characterized by necrotic lesions throughout the plant. To identify the viral protein that elicits this necrotic response, we used a set of hybrid viruses constructed by combination of TMV-Cg and the tobacco mosaic virus strain U1 (TMV-U1). In this study we present evidence that the coat protein of TMV-Cg (CPCg) is the elicitor of the necrotic response in tobacco Xanthi-nn plants. Local and systemic necrotic lesions induced by TMV-Cg and by the hybrid U1-CPCg -that carries CPCg in a TMV-U1 context- are characterized by cell death and by the presence of autoflorescent phenolic compounds and H2O2, just like the HR lesions. In addition, defense-related genes and detoxifying genes are induced in tobacco Xanthi-nn plants after TMV-Cg and U1-CPCg inoculation. We postulate that in our system, CPCg is recognized by sensitive tobacco plants that mount an incomplete defense response. We call this an HR-like since it is not enough to induce plant resistance.  相似文献   

9.
We describe the characterization of a novel gain-of-function Arabidopsis mutant, dll1 (disease-like lesions1), which spontaneously develops lesions mimicking bacterial speck disease and constitutively expresses biochemical and molecular markers associated with pathogen infection. Despite the constitutive expression of defense-related responses, dll1 is unable to suppress the growth of virulent pathogens. However, dll1 elicits normal hypersensitive response in response to avirulent pathogens, thus indicating that dll1 is not defective in the induction of normal resistance responses. The lesion+ leaves of dll1 support the growth of hrcC mutant of Pseudomonas syringae, which is defective in the transfer of virulence factors into the plant cells, and therefore non-pathogenic to wild-type Col-0 plants. This suggests that dll1 intrinsically expresses many of the cellular processes that are required for pathogen growth during disease. Epistasis analyses reveal that salicylic acid and NPR1 are required for lesion formation, while ethylene modulates lesion development in dll1, suggesting that significant overlap exist between the signalling pathways leading to resistance- and disease-associated cell death. Our results suggest that host cell death during compatible interactions, at least in part, is genetically controlled by the plant and DLL1 may positively regulate this process.  相似文献   

10.
Herpetic stromal keratitis (HSK), resulting from corneal HSV-1 infection, represents a T cell-mediated immunopathologic lesion. In T cell transgenic mice on a SCID or RAG knockout background, the T cells mediating lesions are unreactive to viral Ags. In these bystander models, animals develop ocular lesions but are unable to control infection. Transfer of HSV-immune cells into a CD8(+) T cell bystander model resulted in clearance of virus from eyes, animals survived, and lesions developed to greater severity. However, the adoptively transferred CD8(+) T cells were not evident in lesions, although they were readily detectable in the lymphoid tissues as well as in the peripheral and CNS. Our results indicate that viral-induced tissue damage can be caused by bystander cells, but these fail to control infection. Immune CD8(+) T cells trigger clearance of virus from the eye, but this appears to result by the T cells acting at sites distal to the cornea. A case is made that CD8(+) T cell control is expressed in the trigeminal ganglion, serving to curtail a source of virus to the cornea.  相似文献   

11.
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.  相似文献   

12.
The Pca crown rust resistance cluster in the diploid Avena genus confers gene-for-gene specificity to numerous isolates of Puccinia coronata f. sp. avenae. Recombination breakpoint analysis indicates that specificities conferred by the Pca cluster are controlled by at least five distinct genes, designated Pc81, Pc82, Pc83, Pc84, and Pc85. Avena plants with the appropriate genotype frequently respond to P. coronata by undergoing hypersensitive cell death at the sites of fungal infection. Autofluorescence of host cells in response to P. coronata occurs in plants that develop visible necrotic lesions but not in plants that lack this phenotype. Two newly described, non-Pc loci were shown to control hypersensitive cell death. Rds (resistance-dependent suppressor of cell death) suppresses the hypersensitive response (HR), but not the resistance, mediated by the Pc82 resistance gene. In contrast, Rih (resistance-independent hypersensitive cell death) confers HR in both resistant and susceptible plants. Linkage analysis indicates that Rds is unlinked to the Pca cluster, whereas Rih is tightly linked to it. These results indicate that multiple synchronous pathways affect the development of hypersensitive cell death and that HR is not essential for resistance to crown rust. Further characterization of these genes will clarify the relationship between plant disease resistance and localized hypersensitive cell death.  相似文献   

13.
The hypersensitive response (HR) triggered on Nicotiana edwardsonii by tobacco mosaic virus was studied using a modified viral genome that directed expression of the green fluorescent protein. Inoculated plants were initially incubated at 32 degrees C to inhibit the N gene-mediated HR. Transfer to 20 degrees C initiated the HR, and fluorescent infection foci were monitored for early HR-associated events. Membrane damage, which preceded visible cell collapse by more than 3 h, was accompanied by a transient restriction of the xylem within infection sites. Following cell collapse and the rapid desiccation of tissue undergoing the HR, isolated, infected cells were detected at the margin of necrotic lesions. These virus-infected cells were able to reinitiate infection on transfer to 32 degrees C, however, if maintained at 20 degrees C they eventually died. The results indicate that the tobacco mosaic virus-induced HR is a two-phase process with an early stage culminating in rapid cell collapse and tissue desiccation followed by a more extended period during which the remaining infected cells are eliminated.  相似文献   

14.
15.
Plasmodesmatal gating in epidermal cells of Nicotianatabacum was examined in expanding infection sites of tobacco mosaic virus (TMV) expressing a fusion between the viral movement protein and the green fluorescent protein (MP-GFP). The infection sites were circular in profile and within 3 days post-inoculation had developed a brightly fluorescent leading edge, giving them a characteristic ‘halo’ shape. Co-localization of MP-GFP with callose demonstrated that nearly all epidermal cell plasmodesmata were targeted with MP-GFP. The fusion protein was located in the centre of the plasmodesmal pore, between paired callose platelets. Increase in plasmodesmatal size exclusion limit, as determined by the passage of microinjected 10 kDa Texas Red dextran, was restricted predominantly to cells within the fluorescent halo, and was virtually absent from cells in the centre of the expanding infection site. The plasmodesmata of these cells, however, remained fluorescently labelled with MP-GFP. Injections outside the fluorescent infection site failed to show movement of dextran, while dextran injected into cells at the leading edge moved inwards towards the centre of the lesion but not outwards into cells lacking GFP. Leaf incisions through cells ahead of the infection front halted the advance of the virus, indicating that virus replication was absent in non-fluorescent cells outside the infection site. The data provide the first demonstration that within an expanding infection site plasmodesmatal gating is under temporal control.  相似文献   

16.
CMV(Y/GM2)tr is a variant of Cucumber mosaic virus strain Y [CMV(Y)] which infects Nicotiana species, including N. glutinosa, to induce necrotic local lesions (NLLs) in inoculated leaves, although all other CMV strains including CMV(Y) systemically infect Nicotiana species. To investigate the morphological features of this unique host response in N. glutinosa leaves infected with CMV(Y/GM2)tr, the ultrastructure of cells surrounding completely collapsed NLLs in virus‐inoculated N. glutinosa leaves was compared with that of normal cells of mock‐inoculated N. glutinosa leaves. The changes, which have been reported in other several virus–host plant systems showing the hypersensitive response (HR), were frequently observed in cells surrounding the NLLs. Furthermore, clumping of the nuclear matrix within the nuclei, which is a feature of programmed cell death, also occurred in these cells. These results indicated that the HR‐like host response occurred at the fine structural level in the cells of N. glutinosa plants infected with CMV(Y/GM2)tr.  相似文献   

17.
Specific recognition of pathogens is mediated by plant disease resistance (R) genes and translated into a successful defense response. The extent of associated hypersensitive cell death varies from none to an area encompassing cells surrounding an infection site, depending on the R gene activated. We constructed double mutants in Arabidopsis between positive regulators of R function and a negative regulator of cell death, LSD1, to address whether genes required for normal R function also regulate the runaway cell death observed in lsd1 mutants. We report here that EDS1 and PAD4, two signaling genes that mediate some but not all R responses, also are required for runaway cell death in the lsd1 mutant. Importantly, this novel function of EDS1 and PAD4 is operative when runaway cell death in lsd1 is initiated through an R gene that does not require EDS1 or PAD4 for disease resistance. NDR1, another component of R signaling, also contributes to the control of plant cell death. The roles of EDS1 and PAD4 in regulating lsd1 runaway cell death are related to the interpretation of reactive oxygen intermediate-derived signals at infection sites. We further demonstrate that the fate of superoxide at infection sites is different from that observed at the leading margins of runaway cell death lesions in lsd1 mutants.  相似文献   

18.
Rx-mediated extreme resistance against potato virus X in potato does not involve a necrotic hypersensitive response at the site of initial infection and thereby differs from the more usual type of disease resistance in plants. However, the Rx protein is structurally similar to products of disease resistance genes conferring the hypersensitive response. We show in both Nicotiana spp and potato that Rx has the potential to initiate a cell death response but that extreme resistance is separate and epistatic to necrosis. These data indicate that cell death and pathogen arrest are separate disease resistance responses in plants.  相似文献   

19.
In plants, programmed cell death is thought to be activated during the hypersensitive response to certain avirulent pathogens and in the course of several differentiation processes. We describe a transgenic model system that mimics the activation of programmed cell death in higher plants. In this system, expression of a bacterial proton pump in transgenic tobacco plants activates a cell death pathway that may be similar to that triggered by recognition of an incompatible pathogen. Thus, spontaneous lesions that resemble hypersensitive response lesions are formed, multiple defense mechanisms are apparently activated, and systemic resistance is induced in the absence of a pathogen. Interestingly, mutation of a single amino acid in the putative channel of this proton pump renders it inactive with respect to lesion formation and induction of resistance to pathogen challenge. This transgenic model system may provide insights into the mechanisms involved in mediating cell death in higher plants. In addition, it may also be used as a general agronomic tool to enhance disease protection.  相似文献   

20.
Herpes simplex virus (HSV) infection of the cornea culminates in an immunopathological lesion (stromal keratitis--SK) that impairs vision. This report shows that HSV infection results in IL-23 up-regulation, but if this response fails to occur, as was noted in p19-/- mice, the severity of lesions, their incidence and the level of viral induced angiogenesis were significantly increased compared to wild-type (WT) animals (p<0.05). The higher disease severity in p19-/- mice appeared to be the consequence of an increased IL-12 response that in turn led to the induction of higher numbers of IFN-gamma producing CD4(+)T cells, the principal orchestrators of SK. Our results indicate that the severity of HSV induced immunopathological lesions may be mainly the consequence of IL-12 driven Th1 T cell reactions rather than the action of IL-17 producing cells controlled by IL-23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号