首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chikungunya virus (CHIKV) is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE) coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.  相似文献   

2.
Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-alpha/betaR(+/-)) or totally (IFN-alpha/betaR(-/-)) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.  相似文献   

3.
Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms.  相似文献   

4.
5.
Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that causes incapacitating disease in humans characterized by intense joint pain that can persist for weeks, months, or even years. Although there is some evidence of persistent CHIKV infection in humans suffering from chronic rheumatologic disease symptoms, little is known about chronic disease pathogenesis, and no specific therapies exist for acute or chronic CHIKV disease. To investigate mechanisms of chronic CHIKV-induced disease, we utilized a mouse model and defined the duration of CHIKV infection in tissues and the associated histopathological changes. Although CHIKV RNA was readily detectable in a variety of tissues very early after infection, CHIKV RNA persisted specifically in joint-associated tissues for at least 16 weeks. Inoculation of Rag1−/− mice, which lack T and B cells, resulted in higher viral levels in a variety of tissues, suggesting that adaptive immunity controls the tissue specificity and persistence of CHIKV infection. The presence of CHIKV RNA in tissues of wild-type and Rag1−/− mice was associated with histopathological evidence of synovitis, arthritis, and tendonitis; thus, CHIKV-induced persistent arthritis is not mediated primarily by adaptive immune responses. Finally, we show that prophylactic administration of CHIKV-specific monoclonal antibodies prevented the establishment of CHIKV persistence, whereas therapeutic administration had tissue-specific efficacy. These findings suggest that chronic musculoskeletal tissue pathology is caused by persistent CHIKV infection and controlled by adaptive immune responses. Our results have significant implications for the development of strategies to mitigate the disease burden associated with CHIKV infection in humans.  相似文献   

6.
Tang BL 《Cellular microbiology》2012,14(9):1354-1363
Chikungunya virus (CHIKV) infection causes a disease which appears to affect multiple cell types and tissues. The acute phase is manifested by a non-fatal febrile illness, polyarthralgia and maculopapular rashes in adults, but with recurrent arthralgia that may linger for months during convalescence. The issue of cellular and tissue tropism of CHIKV has elicited interest primarily because of this lingering incapacitating chronic joint pain, as well as clear encephalopathy in severe cases among neonates during the re-emergence of the virus in recent epidemics. The principle cell types productively infected by CHIKV are skin fibroblasts, epithelial cells and lymphoid tissues. There is controversy as to whether CHIKV productively infects haematopoietic cells and neurones/glia. CHIKV infection triggers rapid and robust innate immune responses which quickly clears the acute phase infection. However, significant acute as well as chronic infection of less obvious cell types, such as monocytes, neurones/glia or even CNS neural progenitors may conceivably occur. There is therefore a need to ascertain the full range potential of CHIKV tropism, fully understand the cellular responses triggered during the acute the convalescent phases, and explore possible cell types that might be the source of chronic problems associated with CHIKV infection.  相似文献   

7.
Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity - inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis.  相似文献   

8.
Chikungunya virus (CHIKV) is a positive sense, single stranded RNA virus in the genus Alphavirus, and the etiologic agent of epidemics of severe arthralgia in Africa, Asia, Europe and, most recently, the Americas. CHIKV causes chikungunya fever (CHIK), a syndrome characterized by rash, fever, and debilitating, often chronic arthritis. In recent outbreaks, CHIKV has been recognized to manifest more neurologic signs of illness in the elderly and those with co-morbidities. The syndrome caused by CHIKV is often self-limited; however, many patients develop persistent arthralgia that can last for months or years. These characteristics make CHIKV not only important from a human health standpoint, but also from an economic standpoint. Despite its importance as a reemerging disease, there is no licensed vaccine or specific treatment to prevent CHIK. Many studies have begun to elucidate the pathogenesis of CHIKF and the mechanism of persistent arthralgia, including the role of the adaptive immune response, which is still poorly understood. In addition, the lack of an animal model for chronic infection has limited studies of CHIKV pathogenesis as well as the ability to assess the safety of vaccine candidates currently under development. To address this deficiency, we used recombination activating gene 1 (RAG1-/-) knockout mice, which are deficient in both T and B lymphocytes, to develop a chronic CHIKV infection model. Here, we describe this model as well as its use in evaluating the safety of a live-attenuated vaccine candidate.  相似文献   

9.
Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus (CHIKV), are responsible for explosive epidemics involving millions of cases. These mosquito-transmitted viruses cause inflammation and injury in skeletal muscle and joint tissues that results in debilitating pain. We previously showed that arginase 1 (Arg1) was highly expressed in myeloid cells in the infected and inflamed musculoskeletal tissues of RRV- and CHIKV-infected mice, and specific deletion of Arg1 from myeloid cells resulted in enhanced viral control. Here, we show that Arg1, along with other genes associated with suppressive myeloid cells, is induced in PBMCs isolated from CHIKV-infected patients during the acute phase as well as the chronic phase, and that high Arg1 expression levels were associated with high viral loads and disease severity. Depletion of both CD4 and CD8 T cells from RRV-infected Arg1-deficient mice restored viral loads to levels detected in T cell-depleted wild-type mice. Moreover, Arg1-expressing myeloid cells inhibited virus-specific T cells in the inflamed and infected musculoskeletal tissues, but not lymphoid tissues, following RRV infection in mice, including suppression of interferon-γ and CD69 expression. Collectively, these data enhance our understanding of the immune response following arthritogenic alphavirus infection and suggest that immunosuppressive myeloid cells may contribute to the duration or severity of these debilitating infections.  相似文献   

10.
Chikungunya virus (CHIKV) is a mosquito-transmitted Alphavirus that causes in humans an acute infection characterized by polyarthralgia, fever, myalgia, and headache. Since 2005 this virus has been responsible for an epidemic outbreak of unprecedented magnitude. By analogy with other alphaviruses, it is thought that cellular proteases are able to process the viral precursor protein E3E2 to produce the receptor-binding E2 protein that associates as a heterodimer with E1. Destabilization of the heterodimer by exposure to low pH allows viral fusion and infection. We show that among a large panel of proprotein convertases, membranous furin but also PC5B can process E3E2 from African CHIKV strains at the HRQRR(64) / ST site, whereas a CHIKV strain of Asian origin is cleaved at RRQRR(64) / SI by membranous and soluble furin, PC5A, PC5B, and PACE4 but not by PC7 or SKI-1. Using fluorogenic model peptides and recombinant convertases, we observed that the Asian strain E3E2 model peptide is cleaved most efficiently by furin and PC5A. This cleavage was also observed in CHIKV-infected cells and could be blocked by furin inhibitor decanoyl-RVKR-chloromethyl ketone. This inhibitor was compared with chloroquine for its ability to inhibit CHIKV spreading in myoblast cell cultures, a cell-type previously described as a natural target of this virus. Our results demonstrate the role of furin-like proteases in the processing of CHIKV particles and point out new approaches to inhibit this infection.  相似文献   

11.
Chikungunya virus (CHIKV) infection generates strong immune responses that are associated with the disease pathophysiology. Regulatory T cells (Treg-cluster of differentiation (CD)-4+CD25highforkhead box P3 (FOXP3+)) are essential for the induction and maintenance of peripheral tolerance. Thus, they play key roles in determining the patient prognosis by preventing excessive immune responses via different suppression immune mechanisms. However, the regulatory mechanisms involved in human CHIKV infection are still poorly understood. Here, we characterize for the first time the Treg cell molecule-associated-mechanism during acute and chronic human Chikungunya disease. Here, we assessed the Treg cell population and molecule-associated mechanism in the peripheral blood samples of acute and chronic patients with Chikungunya. Our results indicate that CHIKV infection is associated with reduced frequency of Tregs, along with the impaired expression and production of Treg functional markers, including CD39, CD73, perforin, granzyme, programmed death 1 (PD-1), cytotoxic T lymphocyte antigen (CTLA)-4, and transforming growth factor (TGF)-β. This observation suggests that Treg cells possess the poor regulatory capacity in both acute and chronic phases of the disease. Taken together, these data provide significant evidence that the imbalanced response of Treg cells plays an essential role in establishing the pathogenesis of Chikungunya.  相似文献   

12.
《MABS-AUSTIN》2013,5(6):1178-1194
Chikungunya virus (CHIKV) is a medically important human viral pathogen that causes Chikungunya fever accompanied with debilitating and persistent joint pain. Host-elicited or passively-transferred monoclonal antibodies (mAb) are essential mediators of CHIKV clearance. Therefore, this study aimed to generate and characterize a panel of mAbs for their neutralization efficacy against CHIKV infection in a cell-based and murine model.

To evaluate their antigenicity and neutralization profile, indirect enzyme-linked immunosorbent assay (ELISA), an immunofluorescence assay (IFA) and a plaque reduction neutralization test were performed on mAbs of IgM isotype. CHIKV escape mutants against mAb 3E7b neutralization were generated, and reverse genetics techniques were then used to create an infectious CHIKV clone with a single mutation. 3E7b was also administered to neonate mice prior or after CHIKV infection. The survival rate, CHIKV burden in tissues and histopathology of the limb muscles were evaluated. Both IgM 3E7b and 8A2c bind strongly to native CHIKV surface and potently neutralize CHIKV replication. Further analyses of 3E7b binding and neutralization of CHIKV single-mutant clones revealed that N218 of CHIKV E2 protein is a potent neutralizing epitope. In a pre-binding neutralization assay, 3E7b blocks CHIKV attachment to permissive cells, possibly by binding to the surface-accessible E2-N218 residue. Prophylactic administration of 3E7b to neonate mice markedly reduced viremia and protected against CHIKV pathogenesis in various mice tissues. Given therapeutically at 4 h post-infection, 3E7b conferred 100% survival rate and similarly reduced CHIKV load in most mice tissues except the limb muscles. Collectively, these findings highlight the usefulness of 3E7b for future prophylactic or epitope-based vaccine design.  相似文献   

13.
Chikungunya virus (CHIKV) and clinically-related arboviruses cause large epidemics with serious economic and social impact. As clinical symptoms of CHIKV infections are similar to several flavivirus infections, good detection methods to identify CHIKV infection are desired for improved treatment and clinical management. The strength of anti-E2EP3 antibody responses was explored in a longitudinal study on 38 CHIKV-infected patients. We compared their anti-E2EP3 responses with those of patients infected with non-CHIKV alphaviruses, or flaviviruses. E2EP3 cross-reactive samples from patients infected with non-CHIKV viruses were further analyzed with an in vitro CHIKV neutralization assay. CHIKV-specific anti-E2EP3 antibody responses were detected in 72% to 100% of patients. Serum samples from patients infected with other non-CHIKV alphaviruses were cross-reactive to E2EP3. Interestingly, some of these antibodies demonstrated clearly in vitro CHIKV neutralizing activity. Contrastingly, serum samples from flaviviruses-infected patients showed a low level of cross-reactivity against E2EP3. Using CHIKV E2EP3 as a serology marker not only allows early detection of CHIKV specific antibodies, but would also allow the differentiation between CHIKV infections and flavivirus infections with 93% accuracy, thereby allowing precise acute febrile diagnosis and improving clinical management in regions newly suffering from CHIKV outbreaks including the Americas.  相似文献   

14.
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals.  相似文献   

15.
16.
基孔肯亚病毒(chikungunya virus,CHIKV)是一种由埃及伊蚊和白纹伊蚊传播的蚊媒病毒,属于披膜病毒科甲病毒属.从2005年起,CHIKV在非洲、亚洲和美洲多次发生大规模疫情,其感染率较高,能引起发热性疾病,常伴有关节炎,关节炎症状可维持数月甚至数年,对患者生活和社会生产造成极大影响.除了蚊媒传播,妊娠...  相似文献   

17.

Background

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach.

Methodology and Principal Findings

The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE). Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP) and cell cycle regulation.

Conclusion/Significance

This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1) regulation (in favour of virus survival, replication and transmission). While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.  相似文献   

18.
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3–6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.  相似文献   

19.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.  相似文献   

20.

Background

Chikungunya virus (CHIKV), an arbovirus, is responsible for a two-stage disabling disease, consisting of an acute febrile polyarthritis for the first 10 days, frequently followed by chronic rheumatisms, sometimes lasting for years. Up to now, the pathophysiology of the chronic stage has been elusive. Considering the existence of occasional peripheral vascular disorders and some unexpected seronegativity during the chronic stage of the disease, we hypothesized the role of cryoglobulins.

Methods

From April 2005 to May 2007, all travelers with suspected CHIKV infection were prospectively recorded in our hospital department. Demographic, clinical and laboratory findings (anti-CHIKV IgM and IgG, cryoglobulin) were registered at the first consultation or hospitalization and during follow-up.

Results

Among the 66 travelers with clinical suspicion of CHIKV infection, 51 presented anti-CHIKV IgM. There were 45 positive with the serological assay tested at room temperature, and six more, which first tested negative when sera were kept at 4°C until analysis, became positive after a 2-hour incubation of the sera at 37°C. Forty-eight of the 51 CHIKV-seropositive patients were screened for cryoglobulinemia; 94% were positive at least once during their follow-up. Over 90% of the CHIKV-infected patients had concomitant arthralgias and cryoglobulinemia. Cryoglobulin prevalence and level drop with time as patients recover, spontaneously or after short-term corticotherapy. In some patients cryoglobulins remained positive after 1 year.

Conclusion

Prevalence of mixed cryoglobulinemia was high in CHIKV-infected travelers with long-lasting symptoms. No significant association between cryoglobulinemia and clinical manifestations could be evidenced. The exact prognostic value of cryoglobulin levels has yet to be determined. Responsibility of cryoglobulinemia was suspected in unexpected false negativity of serological assays at room temperature, leading us to recommend performing serology on pre-warmed sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号