首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The data obtained indicate that rimorphin (0.1 mg/kg), a specific kappa-agonist, evoked a significant inhibition of the immune response in CBA mice. Pretreatment of the animals with 8-OH-DPAT (0.1 mg/kg), a selective serotonin (5-HT) agonist, activating presynaptic 5-HT(1A) receptors, or WAY-100635 (1.0 mg/kg), a selective 5-HT(1A) receptors blocker of postsynaptic 5-HTIA receptors, prevents kappa-opioid effect. The present data indicate that kappa-opioid-induced immunosuppression is due to the involvement of the 5-HT-ergic mechanisms that are modulated via pre- and postsynaptic 5-HT(1A) receptors.  相似文献   

2.
The effects of the selective delta-1 (delta(1)) opioid receptor agonist, DPDPE, and the selective delta(2) opioid receptor agonist, DSLET, have been studied on the ventricular fibrillation threshold (VFT) in rats with an experimental post-infarction cardiosclerosis (CS). It has been found that CS induced a significant decrease in VFT. This CS-induced decrease in VFT was significantly reversed by intravenous administration of DPDPE (0.1 mg/kg) 10 min before VFT measurement. On the contrary, intravenous injection of DSLET (0.5 mg/kg) exacerbated the CS-induced cardiac electrical instability. Pretreatment with the selective delta opioid receptor antagonist, ICI 174,864 (0.5 mg/kg), completely abolished the changes in VFT produced by both DPDPE and DSLET. Previous administration of a nonselective peripherally acting opioid receptor antagonist, naloxone methiodide (5 mg/kg) also completely reversed the antifibrillatory action of DPDPE. Naloxone methiodide and ICI 174,864 alone had no effect on VFT. Pretreatment with the nonselective K(ATP) channel blocker, glibenclamide (0.3 mg/kg), or with the mitochondrial selective K(ATP) channel blocker, 5-hydroxydecanoic acid (5-HD, 5 mg/kg), completely abolished the DPDPE-induced increase in cardiac electrical stability. Glibenclamide and 5-HD alone had no effect on VFT. These results demonstrate that the delta opioid receptor plays an important role in the regulation of electrical stability in rats with post-infarction cardiosclerosis. We propose that peripheral delta(1) opioid receptor stimulation reverses CS-induced electrical instability via mitochondrial K(ATP) channels. On the contrary, delta(2) opioid receptor stimulation may exacerbate the CS-induced decrease in VFT. Further studies are necessary to determine the delta opioid receptor subtype which mediates the antifibrillatory effect of DPDPE and pro-fibrillatory effect of DSLET.  相似文献   

3.
To investigate the role of serotonin (5-HT) receptor 1A or 7 in regulating lordosis behavior in female rats, ovariectomized rats were treated with 3 kinds of receptor agonists and lordosis behavior was observed. The injected agents were the selective 5-HT1A receptor agonist, buspirone (BUS), the highly selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin ((+/-)8-OH-DPAT), and the 5-HT1A and 5-HT7 receptor agonist, (R)-8-hydroxy-2-(di-n-propylamino)tetralin ((+)8-OH-DPAT). A behavioral test was performed after ovariectomy and subcutaneous implantation of a silicon tube containing estradiol. Female rats in which the lordosis quotient (LQ) was over 70 were intraperitoneally injected with several doses of these agents. As a result, in the BUS group, the dose of 3 mg/kg bw, but not 1 mg/kg was effective for suppressing lordosis. On the other hand, an inhibitory effect was observed from 0.25 mg/kg and 0.5 mg/kg in the (+)8-OH-DPAT and (+/-)8-OH-DPAT groups, respectively. In the time-course experiment, in all drug-treated groups, LQ decreased to lower than 20 after 15 min and low LQ continued for 1 hr at least. Measurement of locomotor activity using an infrared sensor system showed no relation between the decrease in lordosis by these agents and spontaneous locomotion. These results indicate that 5-HT1A is strongly involved in the lordosis-inhibiting circuit of the serotonin neurons.  相似文献   

4.
We investigated the effect of citalopram [a selective serotonin (5-HT) reuptake inhibitor; SSRI] and MKC-242 (a selective 5-HT1A agonist), following treatment with subchronic lithium (p.o., 1 week) on extracellular 5-HT concentrations in the medial prefrontal cortex (mPFC). Acute treatment with citalopram (3 and 30 mg/kg) led to significant increases in extracellular 5-HT concentrations. The subchronic lithium group showed significantly higher basal levels of extracellular 5-HT than normal diet controls. Acute citalopram (3 and 30 mg/kg) treatment together with subchronic lithium treatment showed significant increases in the extracellular 5-HT concentrations, compared with citalopram treatment alone. Acute MKC-242 (1 mg/kg) treatment showed significant decreases in extracellular 5-HT concentrations, in both the normal diet and lithium diet groups to the same extent. The addition of lithium did not change the effect of the 5-HT1A agonist on extracellular 5-HT concentrations. This study suggests that lithium augmentation of the antidepressant effect of SSRI is mediated by the additional increases in extracellular 5-HT concentrations following the co-administrations of lithium and SSRI.  相似文献   

5.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

6.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

7.
It is shown that a selective agonist of 5-HT1A receptors 8-OH-DPAT in a low dose (0.1 mg/kg), which is known to affect mainly the presynaptic 5-HT1A receptors increased the immune response at the peak of reactions (the forth or fifth day after immunization with sheep red blood cells - SRBC) in CBA mice and Wistar rats. Treatment of the animals with the drug 15 min prior to antigen injection raised the number of plaque-forming cells (lgM-PFC) and rosette-forming cells (RFC) in the spleen. The preliminary blockade of 5-HT1A receptor with a selective antagonist of 5-HT1A receptors WAY-100635 (0.1 mg/kg) prevented the immunostimulating effect of 5-HT 1A receptors agonist 8-OH-DPAT, whereas WAY-100635 administration alone in the same dose didn't change the immune response. Activation of 5-HT1A receptors under conditions of electrical lesion of 5-HTergic neurons of the nucleus raphe was unable to enhance the immune reactions, as it did in sham-operated rats. The data obtained indicate that the somatodendric 5-HT1A autoreceptors are involved in immunomodulation.  相似文献   

8.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

9.
R A Glennon 《Life sciences》1986,39(9):825-830
Using a two-lever drug discrimination procedure, six rats were trained to discriminate 0.5 mg/kg of racemic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) from saline. Once trained, the animals demonstrated a dose-related decrease in discriminative performance upon administration of lower doses of DOI (ED50 = 0.16 mg/kg). DOI-stimulus generalization occurred with the putative 5-HT2 agonist DOM (ED50 = 0.49 mg/kg), but not with the 5-HT1A agonist 8-OH DPAT, or the 5-HT1B agonist TFMPP. Furthermore, the DOI stimulus could be antagonized by pretreatment of the animals with the 5-HT2 antagonist ketanserin. The present results, coupled with the prior demonstration that DOI possesses a significant affinity and selectivity for 5-HT2 binding sites, suggest that the discriminative stimulus effects of DOI may be 5-HT2-mediated.  相似文献   

10.
The effects of a repeated treatment with antipsychotic drugs, clozapine and haloperidol, on the modulation of network activity ex vivo by 5-HT receptors were examined in rat frontal cortical slices using extracellular recording. Rats were treated for 21 days with clozapine (30 mg/kg p.o.), or haloperidol (1 mg/kg p.o.). Spontaneous bursting activity was induced in slices prepared 3 days after the last drug administration by perfusion with a medium devoid of Mg(2+) ions and with added picrotoxin (30 mM). The application of 2-3 microM 8-OH-DPAT, acting through 5-HT(1A) receptors, resulted in a reversible decrease of bursting frequency. In the presence of 1 microM DOI, the 5-HT(2) agonist, or 5 microM zacopride, the 5-HT(4) agonist, bursting frequency increased. Chronic clozapine treatment resulted in an attenuation of the effect of the activation of 5-HT(2) receptors, while the effects related to 5-HT(1A) and 5-HT(4) receptor activation were unchanged. Treatment with haloperiol did not influence the reactivity to the activation of any of the three 5-HT receptor subtypes. These data are consistent with earlier findings demonstrating a selective downregulation of 5-HT(2A) receptors by clozapine and indicate that chronic clozapine selectively attenuates the 5-HT-mediated excitation in neuronal circuitry of the frontal cortex while leaving the 5-HT-mediated inhibition intact.  相似文献   

11.
In the dorsal raphe nucleus (DR), extracellular serotonin (5-HT) regulates serotonergic transmission through 5-HT1A autoreceptors. In this work we used in vivo microdialysis to examine the effects of stressful and pharmacological challenges on DR 5-HT efflux in 5-HT1A receptor knockout (5-HT1A-/-) mice and their wild-type counterparts (5-HT1A+/+). Baseline 5-HT concentrations did not differ between both lines of mice, which is consistent with a lack of tonic control of 5-HT1A autoreceptors on DR 5-HT release. (R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT, 0.5 mg/kg) reduced 5-HT levels to 30% of basal values in 5-HT1A+/+ mice, but not in 5-HT1A-/- mice. The selective 5-HT1B receptor agonist 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP 93129, 300 micro m) reduced dialysate 5-HT to the same extent (30-40% of baseline) in the two genotypes, which suggests a lack of compensatory changes in 5-HT1B receptors in the DR of such mutant mice. Both a saline injection and handling for 3 min increased DR dialysate 5-HT in mutants, but not in 5-HT1A+/+ mice. Fluoxetine (5 and 20 mg/kg) elevated 5-HT in a dose-dependent manner in both genotypes. However, this effect was markedly more pronounced in the 5-HT1A-/- mice. The increased responsiveness of the extracellular 5-HT in the DR of 5-HT1A receptor knockout mice reflects a lack of the autoinhibitory control exerted by 5-HT1A autoreceptors.  相似文献   

12.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

13.
Effects of some selective 5-HT antagonists on methamphetamine-induced locomotor activity were investigated in male mice in order to study whether this effect of methamphetamine is selectively or at least partially, induced through stimulation of a specific serotonin receptor subtype. Methamphetamine (1.5 mg/kg, IP) produced a significant increase in locomotor activity. Methamphetamine-induced hyperactivity by the above mentioned dose was significantly antagonized by NAN-190 ( 5-HT(1A) antagonist) at a dose of 4 mg/kg, IP, methiothepin (5-HT(1B/1D) antagonist) at a dose of 0.1mg/kg, IP or mianserin ( 5-HT(2C) antagonist) at a dose of 8 mg/kg, IP. On the other hand, methysergide ( 5-HT(2A/2B) antagonist) at a dose of 1mg/kg, IP or ondansetron ( 5-HT(3) antagonist) at a dose of 0.5mg/kg, IP potentiated the methamphetamine-induced hyperactivity. None of the above mentioned doses of 5-HT antagonists altered the spontaneous activity of mice when administered alone. The results of the present study indicate a possible role for serotonergic mechanisms, in addition to the catecholaminergic systems, in the locomotor stimulant activity of methamphetamine in mice. This role is possibly mediated through direct stimulation of some 5-HT receptor subtypes. Stimulation by methamphetamine of 5-HT(1A), 5-HT(1B/1D) and/or 5-HT(2C) receptor subtypes may result in hyperactivity, whereas stimulation by methamphetamine of 5-HT(2A/2B) and/or 5-HT(3) receptor subtypes may result in decreased activity.  相似文献   

14.
Recent clinical studies suggest that 5-HT(1A) receptor agonists, including buspirone, may have an antidepressant effect and potentiate the efficacy of selective serotonin reuptake inhibitors (SSRI) in major depressive disorders. In the present study, we investigated the effect of tandospirone, a highly potent and selective 5-HT(1A) receptor agonist, on dopamine release and potentiation of fluoxetine-induced dopamine outflow in the medial frontal cortex using microdialysis in freely moving rats. Intraperitoneal injection of tandospirone (5 mg/kg) increased dopamine release to about 190% of basal levels. Pretreatment with the selective 5-HT(1A) receptor antagonist, WAY 100635 (1mg/kg), blocked the effect of tandospirone. Local application of WAY 100635 (10 microM) via microdialysis probe antagonized the increase in dopamine release in the medial frontal cortex induced by systemic injection of tandospirone. Fluoxetine (10 mg/kg) also increased dopamine release in the medial frontal cortex, to 200% of basal levels, and the simultaneous administration of tandospirone and fluoxetine increased the release to 380%. These results indicate that tandospirone potentiates the fluoxetine-induced increase in dopamine release via 5-HT(1A) receptors in the rat medial frontal cortex, and suggest that tandospirone may have therapeutic potential for the treatment of depression.  相似文献   

15.
Selective activation of serotonin 5-HT(1A)-receptors produced different effects on immunological reactivity in mice of ASC strain with genetic predisposition to depressive-like behavior, and parental CBA and AKR strains displaying no depressive reactions. Administration of 5-HT(1A)-receptors agonist 8-OH-DPAT at low dose (0.1 mg/kg) affecting upon presynaptic receptors resulted in immunostimulation in CBA mice and did not change the immune response level in mice of ASC strain. Activation of postsynaptic 5-HT(1A)-receptors with higher dose of 8-OH-DPAT (1.0 mg/kg) caused immunosuppression in CBA and AKR strains while under the same conditions the immune response of ASC mice was increased. Decrease the immune reactions in ASC mice was observed only after application of 8-OHDPAT at dose of 5 mg/kg. The changes of functional activity of pre- and postsynaptic 5-HT(1A)-receptors under a high predisposition to depressive-like behavior providing different effects of this receptor activation on immune function are discussed.  相似文献   

16.
Abstract: Evidence exists that a reinforcement in monoaminergic transmission in the frontal cortex (FCX) is associated with antidepressant (AD) properties. Herein, we examined whether blockade of α2-adrenergic receptors modified the influence of monoamine reuptake inhibitors on FCX levels of serotonin (5-HT), noradrenaline (NAD), and dopamine (DA). The selective α2-adrenergic receptor agonist S 18616 (0.16 mg/kg, s.c.) suppressed extracellular levels of NAD, DA, and 5-HT (by 100, 51, and 63%, respectively) in single dialysates of FCX of freely moving rats. In contrast, the selective α2-adrenergic receptor antagonists atipamezole (0.16 mg/kg, s.c.) and 1-(2-pyrimidinyl)piperazine (1-PP; 2.5 mg/kg, s.c.) increased levels of NAD (by 180 and 185%, respectively) and DA (by 130 and 90%, respectively), without affecting 5-HT levels. Duloxetine (5.0 mg/kg, s.c.), a mixed inhibitor of 5-HT and NAD reuptake, and fluoxetine (10.0 mg/kg, s.c.), a selective 5-HT reuptake inhibitor, both increased levels of 5-HT (by 150 and 120%, respectively), NAD (by 400 and 100%, respectively), and DA (by 115 and 55%, respectively). Atipamezole (0.16 mg/kg, s.c.) markedly potentiated the influence of duloxetine and fluoxetine on levels of 5-HT (by 250 and 330%, respectively), NAD (by 1,030 and 215%, respectively), and DA (by 370 and 170%, respectively). 1-PP similarly potentiated the influence of duloxetine on 5-HT, NAD, and DA levels (by 290, 1,320, and 600%, respectively). These data demonstrate that α2-adrenergic receptors tonically inhibit NAD and DA and phasically inhibit 5-HT release in the FCX and that blockade of α2-adrenergic receptors strikingly potentiates the increase in FCX levels of 5-HT, NAD, and DA elicited by reuptake inhibitors. Concomitant α2-adrenergic receptor antagonism and inhibition of monoamine uptake may thus provide a mechanism allowing for a marked increase in the efficacy of AD agents.  相似文献   

17.
This study was carried out aiming to reach behavioral and neuropharmacological evidence of the permeability of the blood-brain barrier (BBB) to serotonin systemically administered in quails. Serotonin injected by a parenteral route (250-1000 microg x kg(-1), sc) elicited a sequence of behavioral events concerned with a sleeping-like state. Sleeping-like behaviors began with feather bristling, rapid oral movements, blinking and finally crouching and closure of the eyes. Previous administration of 5-HT2C antagonist, LY53857 (3 mg x kg(-1), sc) reduced the episodes of feather bristling and rapid oral movements significantly but without altering the frequency of blinking and closure of the eyes. Treatment with the 5-HT2A/2C antagonist, ketanserin (3 mg x kg(-1), sc) did not affect any of the responses evoked by the serotonin. Quipazine (5 mg x kg(-1), sc) a 5-HT2A/2C/3 agonist induced intense hypomotility, long periods of yawning-like and sleeping-like states. Previous ketanserin suppressed gaping responses and reduced hypomotility, rapid oral movements and bristling but was ineffective for remaining responses induced by quipazine. Results showed that unlike mammals, serotonin permeates the BBB and activates hypnogenic mechanisms in quails. Studies using serotoninergic agonist and antagonists have disclosed that among the actions of the serotonin, feather bristling, rapid oral movements and yawning-like state originated from activation of 5-HT2 receptors while blinking and closure of the eyes possibly require other subtypes of receptors.  相似文献   

18.
Mesolimbic dopamine pathways play a critical role in the behavioural effects of cocaine in rodents. Nonetheless, research has also demonstrated involvement of 5-hydroxytryptamine (5-HT; serotonin) transmission in these effects. The present study investigated the ability of selective 5-HT1B receptor ligands and a 5-HT reuptake inhibitor to substitute for or to alter (enhance or antagonise) the discriminative stimulus effects of cocaine. Male Wistar rats were trained to discriminate cocaine (10 mg/kg, i.p.) from saline (i.p.) in a two-choice, water-reinforced fixed ratio (FR) 20 drug discrimination paradigm. In substitution tests, the selective 5-HT1B receptor agonist 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253; 2.5-5 mg/kg, i.p.) and the 5-HT reuptake inhibitor fluoxetine (5-10 mg/kg, i.p.) elicited ca. 40 and 0% drug-lever responding, respectively. In combination experiments, CP 94253 (2.5-5 mg/kg) given with submaximal doses of cocaine (0.3-2.5 mg/kg) produced a leftward shift in the cocaine dose-response curve; pretreatment with CP 94253 (5 mg/kg) prior to a dose of cocaine (2.5 mg/kg) which elicited lower than 40% drug-lever responding, caused full substitution. Fluoxetine (5 and 10 mg/kg) given in combination with a submaximal dose of cocaine (2.5 mg/kg) produced a 100% drug-lever responding. Pretreatment with the 5-HT1B receptor antagonists N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-1,1'-biphenyl-4 carboxamide (GR 127935; 0.5-5 mg/kg, s.c.) and 3-(3-dimethylamino)-propyl)-4-hydroxy-N-[4-(4-pyridinyl)-phenyl]benzamide (GR 55562; 1 mg/kg, s.c.) failed to modulate the dose-effect curve for cocaine (0.6-5 mg/kg). On the other hand, GR 127935 (5 mg/kg) and GR 55562 (1 mg/kg) significantly attenuated the enhancement of cocaine discrimination evoked by a combination of CP 94253 (5 mg/kg) or fluoxetine (5 mg/kg) and cocaine (2.5 mg/kg). These results indicate that 5-HT1B receptors are not directly involved in the cocaine-induced discriminative stimuli in rats. On the other hand, they indicate that pharmacological stimulation of 5-HT receptors--that also seem to be a target for fluoxetine-mediated increase in 5-HT neurotransmission--can enhance the overall effects of cocaine.  相似文献   

19.
We studied the changes in inferior cardiac sympathetic nerve discharge (SND) produced by unilateral microinjections of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Microinjection of the 5-HT2 receptor antagonist LY-53857 (10 mM) into either the rostral or caudal VLM significantly reduced (P < or = 0.05) the 10-Hz rhythmic component of basal SND without affecting its lower-frequency, aperiodic component. The selective depression of 10-Hz power was accompanied by a statistically significant decrease in mean arterial pressure (MAP). Microinjection of LY-53857 into the VLM also attenuated the increase in 10-Hz power that followed tetanic stimulation of depressor sites in the caudal medullary raphé nuclei. Microinjection of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)2-amino-propane (DOI; 10 microM) into the VLM selectively enhanced 10-Hz SND, and intravenous DOI (1 mg/kg) partially reversed the reduction in 10-Hz SND produced by 5-HT2 receptor blockade in the VLM. Microinjection of the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT; 10 mM), into either the rostral or caudal VLM also selectively attenuated 10-Hz SND and significantly reduced MAP. The reduction in 10-Hz SND produced by 8-OHDPAT was partially reversed by intravenous WAY-100635 (1 mg/kg), which selectively blocks 5-HT1A receptors. These results support the view that serotonergic inputs to the VLM play an important role in expression of the 10-Hz rhythm in SND.  相似文献   

20.
Novel, flexible arylpiperazine gepirone analogs (1a-3a) with a mixed 5-HT1A/5-HT2A receptor profile, low D2 receptor affinity, and agonistic (2a) or partial agonistic (1a, 3a) activity toward 5-HT1A receptor sites were synthesized. Their conformationally restricted counterparts (1b-3b) were selective 5-HT1A ligands (over 5-HT2A and D2 receptors), which turned out to be agonists (2b, 3b), or partial agonist (1b) of 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号