首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a hypercalcemia-producing Leydig cell tumor on vascular reactivity in Fischer rats was studied. Seven to eight days after tumor implantation, there was no difference between tumor (T) and control (C) animals in serum calcium, serum phosphate, plasma catecholamine levels, mean arterial pressure (MAP), or blood pressure responses to norepinephrine (NE) infusion. At day 12-13 of tumor growth, the serum calcium in the tumor-bearing rats was significantly higher (12.2 +/- 0.8 vs. 9.7 +/- 0.3 mg%, P less than .01) and their serum phosphate significantly lower (4.5 +/- 0.3 vs. 5.7 +/- 0.4 mg%, P less than .01) than controls. Plasma epinephrine (E) (497 +/- 154 vs. 62 +/- 13 pg/ml, P less than .05), and norepinephrine (NE) (686 +/- 85 vs. 329 +/- 75 pg/ml, P less than .01) were markedly elevated in the tumor rats. MAP and the blood pressure responses to graded NE infusions were significantly lower in tumor animals at Day 12-13, whereas there was no change in sensitivity to angiotensin II (AII) infusions. In vitro contractile responses of tail artery segments to transmural nerve stimulation (TNS) in animals with tumors were lower than in controls but there were no differences in sensitivity to exogenous NE in vitro. These results suggest that the tumor stimulates production of a circulating factor which desensitizes NE receptors and that this tumor also decreases neurovascular function by an undefined mechanism.  相似文献   

2.
Qi YF  Bu DF  Shi YR  Li JX  Pang YZ  Tang CS 《生理学报》2003,55(3):260-264
本工作观察了自发性高血压大鼠 (SHRs)和Wistar kyoto (WKY)大鼠心肌和主动脉肾上腺髓质素 (a drenomedullin ,ADM)和肾上腺髓质素原N 末端 2 0肽 (proadrenomedullinNterminal 2 0peptide ,PAMP)的水平。以放射免疫分析方法测定血浆、心肌和主动脉ADM含量。用竞争性定量逆转录多聚酶链式反应 (RT PCR)方法测定心肌和主动脉ProADMmRNA含量。结果发现 ,SHRs心肌和主动脉ProADMmRNA水平分别比WKY大鼠高 66 7%和 73 % (均P <0 0 1)。SHRs血浆、心肌和主动脉ADM ir含量分别较WKY大鼠高 2 9%、76 7%和 79% (均P <0 0 1)。SHRs血浆、心肌和主动脉PAMP ir水平分别较WKY大鼠高 42 5 % (P <0 0 1)、47 2 % (P <0 0 1)和 2 7 3 % (P <0 0 5 )。另外 ,SHRs的ADM和PAMP的比值较WKY大鼠明显增高 (心肌和主动脉分别为 2 0± 0 2 5vs 1 64± 0 3和 2 2± 0 18vs 1 5 6± 0 2 8)。结果提示 ,SHRs心肌和主动脉ProADM基因表达上调 ,ADM和PAMP水平升高 ,但二者升高的比例不一致。SHRs的ADM和PAMP升高不一致的病理生理意义有待进一步研究  相似文献   

3.
To examine basal axoplasmic norepinephrine (NE) kinetics at the in situ cardiac sympathetic nerve ending, we applied a dialysis technique to the heart of anesthetized cats and performed the dialysate sampling with local administration of a pharmacological tool through a dialysis probe. The dialysis probe was implanted in the left ventricular wall, and dihydroxyphenylglycol (DHPG, an index of axoplasmic NE) levels were measured by liquid chromatogram-electrochemical detection. Control dialysate DHPG levels were 161+/-19 pg/ml. Pargyline (monoamine oxidase inhibitor, 1 mM) decreased the dialysate DHPG levels to 38+/-10 pg/ml. Further alpha-methyl-para-tyrosine, omega-conotoxin GVIA, desipramine (NE synthesis, release and uptake blockers) decreased the dialysate DHPG levels to 64+/-19, 106+/-15, 110+/-22 pg/ml, respectively. In contrast, reserpine (vesicle NE transport inhibitor, 10 microM) increased the dialysate DHPG levels to 690+/-42 pg/ml. Thus, NE synthesis, metabolism and recycling (release, uptake and vesicle transport) affected basal intraneuronal NE disposition at the nerve endings. Measurement of DHPG levels through a dialysis probe provides information about basal intraneuronal NE disposition at the cardiac sympathetic nerve endings. Yohimbine (alpha(2)-adrenoreceptor blocker, 10 microM) and U-521 (catechol-O-methyltransferase blocker, 100 microM) did not alter the dialysate DHPG levels. Furthermore, there were no significant differences in the reserpine induced DHPG increment between the presence and absence of desipramine (10 microM) or alpha-methyl-para-tyrosine (100 mg/kg i.p.). These results may be explained by the presence of two axoplasmic pools of NE, filled by NE taken up and synthesized, and by NE overflow from vesicle. The latter pool of NE may be closed to the monoamine oxidase system in the axoplasma.  相似文献   

4.
Although skeletal muscle sympathetic nerve activity plays an important role in the regulation of vascular tone and glucose metabolism, relatively little is known about regional norepinephrine (NE) kinetics in the skeletal muscle. With use of the dialysis technique, we implanted dialysis probes in the adductor muscle of anesthetized rabbits and examined whether dialysate NE and its metabolites were influenced by local administration of pharmacological agents through the dialysis probes. Dialysate dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured as two major metabolites of NE. The skeletal muscle dialysate NE, DHPG and MHPG were 11.7+/-1.2, 38.1+/-3.2, and 266.1+/-28.7 pg/ml, respectively. Basal dialysate NE levels were suppressed by tetrodotoxin (Na(+) channel blocker, 10 microM) (5.1+/-0.6 pg/ml), and augmented by desipramine (NE uptake blocker, 100 microM) (25.8+/-3.2 pg/ml). Basal dialysate DHPG levels were suppressed by pargyline (monoamine oxidase blocker, 1mM) (24.3+/-4.6 pg/ml) and augmented by reserpine (vesicle NE transport blocker, 10 microM) (75.8+/-2.7 pg/ml). Basal dialysate MHPG levels were not affected by pargyline, reserpine, or desipramine. Addition of tyramine (sympathomimetic amine, 600 microM), KCl (100 mM), and ouabain (Na(+)-K(+) ATPase blocker, 100 microM) caused brisk increases in dialysate NE levels (200.9+/-14.2, 90.6+/-25.7, 285.3+/-46.8 pg/ml, respectively). Furthermore, increases in basal dialysate NE levels were correlated with locally administered desipramine (10, 100 microM). Thus, dialysate NE and its metabolite were affected by local administration of pharmacological agents that modified sympathetic nerve endings function in the skeletal muscle. Skeletal muscle microdialysis with local administration of a pharmacological agent provides information about NE release, uptake, vesicle uptake and degradation at skeletal muscle sympathetic nerve endings.  相似文献   

5.
Fourteen 23 week old male spontaneously hypertensive rats (SHR) were randomly divided into saline control or phospholipid (I-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) treatment groups. Four weeks of baseline systolic blood pressure (SBP) and heart rate (HR) measurements were determined via tail plethysmography. On week 25 of the baseline period a 1.5 ml blood sample was taken by tail clip for analysis of norepinephrine (NE), epinephrine (E), and plasma renin activity (PRA). On the following week, a single injection of phospholipid (11 ug/kg, s.c.) was given to the experimental animals following baseline SBP and HR determinations. A similar procedure was employed for control subjects, except they received an injection of normal saline (0.5 ml, s.c.). Systolic BP and HR responses were monitored for 24 minutes following the injection. A 1.5 ml blood sample was taken at the end of the 4th minute for NE, E, and PRA assays. A significant drop in SBP (202 +/- 5 mmHg to 124 +/- 6 mmHg) and an increase in HR (431 +/- 17 bpm to 519 +/- 21 bpm) were observed for experimental animals, but not for control subjects. Plasma NE increased significantly (446 +/- 42 pg/ml to 1099 +/- 77 pg/ml), but E remained unchanged following treatment with the phospholipid. Plasma renin activity increased for both groups, but this change was only significant for the experimental group (18.1 +/- 5.7 ng Al/ml/hr to 34.3 +/- 3.6 ng Al/ml/hr). Thus, it appears that I-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine is a potent antihypertensive vasodilating agent which stimulates baroreceptor mediated sympathetic discharge to the heart and kidneys of the SHR.  相似文献   

6.
We studied the sympathetic neural response on airways to hypotensive stimuli in 19 swine in vivo. The effects of pharmacologically induced hypotension with nitroprusside (NTP) and hypotension elicited by intravenous compound 48/80 (48/80), a mast cell degranulating agent, were compared after equivalent reductions in mean arterial blood pressure (MAP). Reduction of the MAP to 60% of base line with NTP in six swine caused an increase in plasma epinephrine (E) from 60 +/- 28 to 705 +/- 276 pg/ml (P = 0.032) and plasma norepinephrine (NE) from 270 +/- 46 to 796 +/- 131 pg/ml (P = 0.032). Comparable reduction in MAP elicited with 48/80 in six other swine caused a substantially greater increase in both plasma E (9,581 +/- 4,147 pg/ml; P = 0.012 vs. NTP group) and plasma NE (2,239 +/- 637 pg/ml; P = 0.041 vs. NTP group). Catecholamine secretion attenuated mediator-induced changes in lung resistance (RL). In animals receiving 48/80, RL increased from 2.97 +/- 0.31 to 7.44 +/- 0.56 cmH2O.l-1.s. In animals having ganglionic blockade with 7.5 mg/kg iv hexamethonium and beta-adrenergic blockade with propranolol (4.0 mg/kg iv followed by 40 micrograms/kg-1.min-1), comparable doses of 48/80 caused an increase in RL to 18.6 +/- 4.55 cmH2O.l-1.s (P less than 0.04 vs. swine receiving neither hexamethonium nor propranolol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We tested the hypothesis that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia. Twelve healthy young adults were studied on two separate occasions, once after infusions of a pharmacological dose of alpha-(1-24)-ACTH (100 microg/h) from 0930 to 1200 and 1330 to 1600, which raised plasma cortisol levels to approximately 45 microg/dl on day 1, and once after saline infusions on day 1. Hyperinsulinemic (2.0 mU x kg(-1) x min(-1)) stepped hypoglycemic clamps (90, 75, 65, 55, and 45 mg/dl glucose steps) were performed on the morning of day 2 on both occasions. These markedly elevated antecedent endogenous cortisol levels reduced the adrenomedullary (P = 0.004, final plasma epinephrine levels of 489 +/-64 vs. 816 +/-113 pg/ml), sympathetic neural (P = 0.0022, final plasma norepinephrine levels of 244 +/-15 vs. 342 +/-22 pg/ml), parasympathetic neural (P = 0.0434, final plasma pancreatic polypeptide levels of 312 +/- 37 vs. 424 +/- 56 pg/ml), and neurogenic (autonomic) symptom (P = 0.0097, final symptom score of 7.1 +/-1.5 vs. 10.6 +/- 1.6) responses to subsequent hypoglycemia. Growth hormone, but not glucagon or cortisol, responses were also reduced. The findings that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia are potentially relevant to cortisol mediation of hypoglycemia-associated autonomic failure, and thus a vicious cycle of recurrent iatrogenic hypoglycemia, in people with diabetes mellitus.  相似文献   

8.
Relationships between changes in levels of catechols and directly recorded sympathetic nerve activity were examined using simultaneous measurements of renal sympathetic nerve activity and arterial and renal venous concentrations of norepinephrine (NE), dihydroxyphenylalanine (dopa), and dihydroxyphenylglycol (DHPG) during reflexive alterations in renal sympathetic nerve activity in anesthetized, adrenal-demedullated rats. Nitroprusside infusion increased renal sympathetic nerve activity by 90%, arterial levels of dopa by 96%, NE by 326%, and DHPG by 141%. Phenylephrine infusion increased arterial DHPG levels by 81% and decreased renal sympathetic nerve activity by 37% and NE levels by 26%; arterial dopa levels were unchanged. Ganglionic blockade by chlorisondamine (with concomitant phenylephrine infusion to maintain MAP) decreased renal sympathetic nerve activity by 65% and NE concentrations by 37%; arterial dopa concentrations were unchanged, and DHPG concentrations increased by 60%. Proportionate responses of arterial levels of NE were strongly related to proportionate changes in renal sympathetic nerve activity. Clearance of DHPG from arterial plasma was prolonged by phenylephrine-induced hypertension and by nitroprusside-induced hypotension. The results suggest that changes in arterial NE levels reflect changes in sympathetic activity; changes in dopa levels reflect changes in catecholamine biosynthesis; and changes in DHPG levels depend on reuptake of released NE and on hemodynamic factors affecting DHPG clearance.  相似文献   

9.
Norepinephrine (NE) kinetics were investigated in freely moving (FM) and minimally stressed (MS) rats with the isotope dilution technique. 1) The mean NE spillover rate (NE-SOR) was 79 +/- 6 ng. kg(-1). min(-1), and the mean NE metabolic clearance rate (NE-MCR) 179 +/- 9 ml. kg(-1). min(-1) (n = 31). Thus the NE kinetics in FM and MS rats are much faster than in human beings, probably related to a higher sympathetic drive. 2) Whether the magnitude of NE-MCR is related to the level of plasma NE concentration was investigated. No significant correlation was calculated between plasma NE concentration and NE-MCR in 31 control rats. When plasma NE concentration was varied during either acute or chronic infusion of exogenous NE, NE-MCR remained unchanged as long as animal hemodynamics were not altered. When plasma NE concentration was high enough to increase mean arterial pressure (MAP), NE-MCR was decreased. However, when MAP was increased within comparable magnitude, NE-MCR was decreased during NE and increased during epinephrine (Epi) infusion. Thus the existence of an alpha-/beta-adrenergic mechanism involved in the regulation of NE-MCR independent of known hemodynamic mechanisms is suggested. 3) The "epinephrine hypothesis" was revisited in FM and MS rats. At variance with humans, very high plasma Epi concentrations have to be induced to increase NE-SOR in resting rats. Furthermore, NE-MCR was also increased, accounting for the nonsignificant increase of plasma NE concentration. Within the range of Epi concentrations with no effect on NE-SOR, an increase of NE release was revealed when the presynaptic alpha(2)-adrenoreceptors were partially inhibited by yohimbine. This suggests the existence of a second epinephrine hypothesis.  相似文献   

10.
To investigate the relationship between dopamine (DA) released into the bloodstream and sympathoadrenal activity, levels of free DA, norepinephrine (NE), and epinephrine (E) in plasma were recorded in four dogs subjected to three tests: treadmill exercise at two work levels [55 and 75% maximal O2 uptake; 15 min], normobaric hypoxia (12% O2; 1 h), combined exercise and hypoxia. Normoxic exercise induced slight nonsignificant decreases in the arterial partial pressure of O2 (PaO2), increases in NE [median values and ranges during submaximal work vs. rest: 1086 (457-1,637) vs. 360 (221-646) pg/ml; P less than 0.01] and E [277 (151-461) vs. 166 (95-257) pg/ml; P less than 0.05], but it failed to alter the DA level. Hypoxia elicited large decreases in PaO2 [hypoxia vs. normoxia: 42.8 (40.3-50.0) vs. 97.6 (83.2-117.6) Torr; P less than 0.01], increases in DA [230 (105-352) vs. 150 (85-229) pg/ml; P less than 0.01] and NE [383 (219-1,165) vs. 358 (210-784) pg/ml; P less than 0.05], but it failed to alter the E level. Combined exercise and hypoxia further increased NE levels but did not alter the DA response to hypoxia alone. The data indicate that free DA in plasma may vary independently of the sympathoadrenal activity.  相似文献   

11.
Head-down bed rest at an angle of 6 degrees was used as an experimental model to simulate the hemodynamic effects of microgravity, i.e., the shift of fluids from the lower to the upper part of the body. The sympathoadrenal activity during acute (from 0.5 to 10 h) and prolonged (4 days) head-down bed rest was assessed in eight healthy men (24 +/- 1 yr) by measuring epinephrine (E), norepinephrine (NE), dopamine (DA), and methoxylated metabolite levels in their plasma and urine. Catecholamine (CA) and methoxyamine levels were essentially unaltered at any time of bed rest. Maximal changes in plasma were on the second day (D2): NE, 547 +/- 84 vs. 384 +/- 55 pg/ml; DA, 192 +/- 32 vs. 141 +/- 16 pg/ml; NS. After 24 h of bed rest, heart rate decreased from 71 +/- 1 to 63 +/- 3/min (P less than 0.01). Daily dynamic leg exercise [50% maximum O2 uptake (VO2 max)] used as a countermeasure did not alter the pattern of plasma CA during bed rest but resulted in a higher urinary NE excretion during postexercise recovery (+45% on D2; P less than 0.05). The data indicate no evident relationship between sympathoadrenal function and stimulation of cardiopulmonary receptors or neuroendocrine changes induced by central hypervolemia during head-down bed rest.  相似文献   

12.
The atrial contents and concentrations, and the plasma concentrations of atrial natriuretic polypeptide (ANP) in spontaneously hypertensive rats (SHR) and SHR stroke-prone (SHRSP) were measured and compared with those of age-matched Wistar Kyoto rats (WKY) using a specific radioimmunoassay (RIA) for alpha-rat ANP (alpha-rANP). The contents of alpha-rANP-LI in the atria of SHR (19.0 +/- 0.9 micrograms, mean +/- SEM) and SHRSP (19.3 +/- 0.6 micrograms) were significantly lower than that of WKY (22.8 +/- 1.4 micrograms) (p less than 0.05). The atrial concentration of alpha-rANP-LI was also significantly lower in SHR (248.2 +/- 11.3 ng/mg, p less than 0.05) and tended to be lower in SHRSP (272.2 +/- 12.4 ng/mg) than that of WKY (300.0 +/- 14.2 ng/mg). Furthermore, the concentrations in the left auricles of SHR and SHRSP were significantly lower than that of WKY (p less than 0.01 and p less than 0.05, respectively). In contrast, no significant difference was observed in the alpha-rANP-LI concentrations in the right auricles of WKY, SHR and SHRSP. Gel filtration studies coupled with RIA showed that gel filtration profiles of the extracts from the right and left auricles of WKY, SHR and SHRSP were essentially identical. The plasma alpha-rANP-LI levels in SHR (260 +/- 34 pg/ml) and SHRSP (319 +/- 19 pg/ml) were significantly higher than that in WKY (170 +/- 17 pg/ml) (p less than 0.05 and p less than 0.01, respectively). These results suggest that the secretion of ANP from the heart is increased in SHR and SHRSP compared with WKY.  相似文献   

13.
Overactivity of the sympathetic nervous system and immunologic dysfunction have been shown to contribute to development and maintenance of hypertension in the Okamoto spontaneously hypertensive rat (SHR). In this study, the combined effects of reduction in sympathetic activity and immunologic manipulation on spontaneous hypertension have been determined. Neonatal SHRs received sham implants or implants of thymic tissue from Wistar donor rats. In addition, the thymus-implanted SHRs underwent bilateral renal denervation when they were 6 weeks old. At the same time, the sham-implanted SHRs underwent sham renal denervation. The denervations or sham operations were repeated when the SHRs were 9, 12, 15, and 18 weeks old. Wistar-Kyoto (WKY) rats also underwent serial sham renal denervations. Tail-cuff pressure measurements indicated that approximately 75% of the chronic hypertension in the SHRs was prevented by the combination of thymic implants and renal denervations. Direct arterial pressure measurements confirmed these results; when the rats were 21 weeks old, mean arterial pressure averaged 177 +/- 5.5 mm Hg in sham-operated SHRs, 134 +/- 2.7 mm Hg in implanted, denervated SHRs, and 121 +/- 2.1 mm Hg in sham-operated WKY rats. These data indicate that overactivity of the sympathetic nervous system and immunologic dysfunction account for the majority of the hypertension in the Okamoto SHR.  相似文献   

14.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

15.
Two experiments were conducted to examine the effect of estradiol-17beta (E(2)-17beta) on content of immunoreactive prostagladin F(2)alpha (PGF, ng) and total protein (TUP, mg) in uterine flushings, as well as concentrations of 13, 14-dihydro-15-keto-PGF(2)alpha (PGFM) in plasma (Pg/ml). In experiment 1, Holstein heifers were utilized in a single reversal trial in which either E(2)-17beta (3 mg in 2 ml saline/ethanol 50:50; n=5) or vehicle alone (n=6) were given intravenously on day 14 or 15 of the estrous cycle (Period 1) following an induced estrus (day of estrus = day 0). Treatment (Trt) groups were reversed in Period 2 (Day 14 or 15 of the second estrous cycle). Jugular venous plasma was obtained before treatment (Oh), and at 5, 6, and 9h posttreatment (PT). Uterine flushings were collected nonsurgically in vivo , per cervix, via Foley catheter at 6h PT (20 ml of .9% saline per uterine horn). E(2)-17beta did not significantly alter (E(2)-17beta vs vehicle; x(-) +/- S.E.M.) PGF (1674 +/- .11 +/- 338.39 vs 1889.91 +/- 400.24 ng; P> .10) or TUP (33.25 +/- 2.57 vs 39.16 +/- 3.04 mg; P > .10). However, E(2)-17beta increased (P < .05) plasma PGFM (E(2)-17beta vs vehicle) after treatment (0h, 113.2 vs 163.8; 5h, 312.5 vs 203.9; 6h, 324.5 vs 198.0; 9h, 323.2 vs 246.8, pg/ml). In experiment 2, crossbred beef cattle received comparable treatments of either E(2)-17beta (n=5) or vehicle (n=5) on day 14 or 15 postestrus. Jugular venous plasma was obtained at 0h PT, and at 6h PT. Uterine flushings (1.9% saline, 20 ml per uterine horn) and peripheral plasma were collected at slaughter. Estradiol-17beta increased PGF (30.07 +/- 5.94 vs 8.46 +/- 2.01 ng; P> <.05) in uterine flushings as well as PGFM in plasma (E(2)-17beta : 55.82 +/- 19.13 pg/ml, at 0h and 89.31 +/- 14.02 pg/ml, at 6h, vs saline: 103.46 +/- 50.73 pg/ml, at 0h and 17.78 +/- 14.22, at 6h). Estradiol-17beta stimulated uterine production and release of PGF and protein as measured in flushings (experiment 2) as well as plasma PGFM responses (experiments 1 and 2). Uterine and/or cervical stimulation of experiment 1 may have masked uterine response to E(2)-17beta.  相似文献   

16.
One mechanism for organ damage in individuals with arterial hypertension may be due to oxygen free radical production. This study was designed to localize free radicals in a microvascular network of mature spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. Because glucocorticoids play a role in pressure elevation of SHRs, we investigated their role in microvascular free radical formation. Oxygen radical production in mesentery was detected by tetranitroblue tetrazolium reduction to formazan aided by digital light-absorption measurements. Formazan deposits were observed in the endothelial cells and lumens of all microvessels and in lymphatic endothelia but were fewer in tissue parenchyma. The formazan distribution in younger (14-16 wk old) WKY rats and SHRs was heterogeneous with low values in capillaries and small arterioles/venules (<30 microm) but enhanced deposits in larger venules. Adrenalectomy served to reduce the formazan density in SHRs to the level of WKY rats, whereas dexamethasone supplementation of the adrenalectomized rats caused elevation in the larger venules of SHRs. In older (40 wk old) SHRs, formazan levels were elevated in all hierarchies of microvessels. After pressure reduction was employed with chronic hydralazine treatment, the formazan deposits were reduced in all locations of the microcirculation in both WKY rats and SHRs. Elevated formazan deposits were also found in lymphatic endothelium. These results suggest that oxygen free radical production is elevated in both high- and low-pressure regions of SHR microcirculation via a process that is controlled by glucocorticoids. Older SHRs have higher formazan levels than younger SHRs in all microvessels. Chronic hydralazine treatment, which serves to reduce arterial blood pressure, attenuates tetranitroblue tetrazolium reduction in WKY rats and SHRs even in venules of the microcirculation, which has no micropressure elevation. Free radical production may be a more global condition in SHRs and may not be limited to arteries and arterioles.  相似文献   

17.
Neurotensin (NT) levels were examined in five aerobically untrained females aged 20-36 engaged in acute graded exercise testing. In addition to radioimmunoassay measurements, high pressure liquid chromatography was performed to further characterize plasma NT-like immunoreactivity (NTLI). Epinephrine (E), norepinephrine (NE), and lactate (L) responses were also determined. Exercise testing consisted of one hour of treadmill running subdivided into three 20-minute segments representing 50, 60, and 70%, respectively, of the previously determined maximal aerobic capacity. Mock testing established baseline values for each subject. Three components of NTLI were evaluated: NT(1-13), NT(1-8), and NT(1-11). Resting NT(1-13) concentrations averaged 5.8 +/- 4.2 fmol/ml, while mean NT(1-8) values were 13.0 +/- 5.2 fmol/ml, and NT(1-11) averaged 5.8 +/- 3.2 fmol/ml. Peak exercise values were: for NT(1-13), 5.4 +/- 2.0 fmol/ml, for NT(1-8), 13.5 +/- 2.8 fmol/ml, and for NT(1-11), 5.9 +/- 0.5 fmol/ml. Analysis of variance with repeated measures detected no changes in these levels with exercise. Four-fold increases in E (36 +/- 3 pg/ml to 121 +/- 51 pg/ml), NE (340 +/- 95 pg/ml to 1431 +/- 319 pg/ml), and L (0.8 +/- 0.1 mM to 4.3 +/- 1.7 mM) confirmed the stress of exercise on the body in general, and the sympatho-adrenal system in particular. While other research has associated peripheral NT metabolite elevations with stressful stimuli in laboratory animals, the results of the present study suggest either that NT is not released from the human adrenal medulla during exercise, or that peripheral sampling precludes detection of any increases in NT from the adrenal medulla with currently available radioimmunoassay systems.  相似文献   

18.
An assay was developed to quantify norepinephrine (NE) and its metabolites (MHPG and DHPG) by high-performance liquid chromatography with electrochemical detection method (HPLC-ECD) in brain tissue and plasma of rats treated by LiCl. Separation on C(18) column was obtained by a mobile phase consisting of 4.5% methanol in buffer (0.1 M sodium acetate, 0.2 M citric acid) containing 0.2 mM ethylenediaminetetraacetic acid disodium salt (EDTA Na(2)) and 0.4 mM sodium octylsulfate, operated at a flow rate of 0.8 ml/min. A potential of +0.78 V was applied across the working and reference electrodes of the detector. The precision was in the range 2.88-4.35% for NE, 5.94-11.0% for MHPG and 1.97-4.40% for DHPG. Accuracy was 98.8-99.3% for NE, 97.4-100% for MHPG and 96.1-101% for DHPG. The limit of detection was 0.6 ng/ml for NE, 0.5 ng/ml for MHPG and 0.2 ng/ml for DHPG. The linearity is over the range 20-60 ng/ml for NE, 7-23 ng/ml for MHPG and 6-20 ng/ml for DHPG. The assay has been applied successfully to measure simultaneously cortex and plasmas concentrations of these three catecholamines in rats.  相似文献   

19.
By using highly specific antisera against estradiol 17-sulfate (E2-17-S) and against 2-hydroxyestradiol 17-sulfate (2-OH-E2-17-S), plasma concentrations of these sulfates in Wistar rats were determined. The plasma levels of E2-17-S and 2-OH-E2-17-S in the male were 23.5 +/- 5.3 and 21.6 +/- 6.2 pg/ml, respectively. During the estrus cycle of the female, the plasma concentration of E2-17-S reached its highest level 69.0 +/- 11.8 pg/ml, during the diestrus stage, and its lowest level 36.9 +/- 6.6 pg/ml, during the proestrus stage. Similar tendencies were observed in the case of 2-OH-E2-17-S. To examine the dynamic behavior of both sulfates, the plasma metabolic clearance rate (MCRp) of E2-17-S and 2-OH-E2-17-S were determined by infusion experiments. MCRp of E2-17-S and 2-OH-E2-17-S in male rats were 102 and 653 ml/h (means), respectively, and in female rats were 115 and 644 ml/h (means), respectively. The low MCRp values of both sulfates imply their slow metabolic turn-over.  相似文献   

20.
Significant increases (P less than 0.001) in plasma insulin and triglyceride concentrations and in blood pressure were seen when SHR and WKY rats ate a fructose-enriched diet for 14 days. However, all of the changes were significantly accentuated (P less than 0.02-0.001) in SHR rats. Specifically the increment in plasma insulin concentration following the fructose-enriched diet was 42 +/- 4 microU/ml in SHR as compared to 25 +/- 4 microU/ml in WKY rats (P less than 0.001). Plasma triglyceride concentrations also increased to a greater degree in response to fructose in SHR rats (260 +/- 24 vs. 136 +/- 20 mg/dl, P less than 0.001). Finally, the fructose-induced increase in blood pressure of 29 +/- 4 mm of Hg in SHR rats was greater (P less than 0.02) than that seen in WKY rats (19 +/- 2 mm of Hg). There was no change in plasma glucose concentration in response to the fructose diet. WKY rats gained more weight than did the SHR rats. Thus, although plasma triglyceride and insulin concentration and blood pressure increased when either WKY or SHR rats consumed a fructose enriched diet, the magnitude of these changes was greater in SHR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号