首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Experiments were conducted to evaluate the possible role of circulating growth hormones triiodothyronine (T3), thyroxine (T4), and insulin-like growth factor I (somatomedin-C; IGF-I) in the elevation of plasma growth hormone (GH) which occurs in protein-restricted chickens. Plasma hormone changes were determined over a 2-week period of protein depletion by feeding a 5% protein diet as well as a similar period of protein repletion with a 20% protein diet. The rise in plasma GH was observed in two separate studies. Plasma concentrations of T4, T3, and IGF-I were all depressed in protein-restricted chicks prior to or concurrent with the GH elevation. In the protein repletion time course study, T4 and T3 concentrations were normalized prior to or concurrent with plasma GH normalization. However, IGF-I concentrations in repleted chicks did not return to control levels until after normal levels of GH were observed. These data suggest that thyroid hormones may play a greater role in the regulation of GH secretion during periods of malnourishment than IGF-I; the latter being currently thought to be a peripherally circulating inhibitor of GH release in animals.  相似文献   

2.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

3.
4.
Growth hormone (GH)-transgenic mice provide a model for studying hormonal regulation of gene products responsible for efficient lean growth. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (BP-3) are two products involved in mediating the growth promoting actions of GH. Mice carrying the ovine metallothionein la-ovine growth hormone (oMtla-oGH) transgene were used to study GH regulation of IGF-I and PB-3 expression because these mice do not exhibit elevated basal oGH levels without transgene stimulation by exogenous zinc. C57B1/6XCBA mice with (transgenic=TG) and without (control=C) the oMtla-oGH transgene were activated (+Zn) or inactivated (-Zn) by the addition or removal of 25 mM zinc sulfate in the drinking water. Plasma IGF-I and BP-3 levels were determined by radioimmunoassay and western ligand blotting, respectively. Hepatic IGF-I and BP-3 mRNA levels were determined by slot-blot analysis. TG+Zn mice had higher plasma IGF-I (p<0.05) and hepatic IGF-I mRNA (p<0.05) levels as compared to TG-Zn, C+Zn and C-Zn mice. Plasma IGF-I and hepatic IGF-I mRNA levels in TG-Zn mice were not different from C+Zn and C-Zn mice. Removal of Zn decreased hepatic IGF-I mRNA levels to C levels in TG mice. Plasma BP-3 and hepatic BP-3 mRNA levels in TG+Zn mice were increased (p<0.05) as compared to TG-Zn, C-Zn and C+Zn. Plasma BP-3 and hepatic BP-3 mRNA levels did not differ between TG-Zn, C-Zn and C+Zn mice. Expression of the transgene also increased the level of plasma BP-3 during pregnancy as compared to that observed for pregnant C mice. We conclude that oGH regulates IGF-I and BP-3 expression in the oMtla-oGH transgenic mouse model system.  相似文献   

5.
In the present study we report the effects of therapy with growth hormone-releasing factor (1-29)NH2 (GRF) on growth rate, plasma levels of insulin growth factor I (IGF-I) and growth hormone (GH) secretion in 11 children who were selected solely on the basis of their short stature and normal GH secretion on standard provocative tests. All children received GRF for 6 months (5 micrograms/kg body weight subcutaneously) each evening. The 24-hour GH secretory profile was studied before and after 6 months of treatment. Simultaneously, GH secretory responses to single intravenous bolus GRF (1.5 micrograms/kg body weight) were also studied before, during, and 6 months off therapy with GRF(1-29)NH2. Plasma levels of IGF-I were measured before, during (1, 2 and 6 months), and after 6 months off therapy with GRF. Statural growth was measured at 3-month intervals. The peak plasma GH level in response to GRF was 56.04 +/- (SD) 24.46 ng/ml before treatment, and similar results were found after therapy. The 24-hour GH secretory profile did not show differences before, during, and after treatment. Comparably, no differences were found in GH pulse frequency, pulse amplitude, pulse height, pulse increment, pulse area and total area before, and 6 months off therapy with GRF. The increments in serum IGF-I achieved were not significantly different at all intervals studied. All patients increased growth velocities (mean +/- SD, cm/year) in response to GRF therapy. Our results demonstrate that GRF administration was effective in accelerating growth velocity in 11 children without GH deficiency.  相似文献   

6.
We examined the response of growth hormone (GH), total plasma insulin-like growth-factor I (IGF-I), and growth rate to a change in ration in coho salmon. Tanks of individually tagged fish were placed on high, medium, or low ration, and sampled every 2 weeks for 8 weeks to create a range of growth rates. Some fish received non-lethal blood draws, while others were sampled terminally. Plasma IGF-I levels were higher in high ration fish than in low ration fish from 4 weeks after the beginning of experimental diets to the end of the experiment. GH levels were low and similar in all fish after changing rations, except for the fish in the low ration group at week 2. IGF-I was strongly correlated with specific growth rate in weight in terminally sampled fish after 4 weeks. GH did not correlate with growth rate or IGF-I levels. Growth parameters (length, weight, specific growth rates in weight and length, and condition factor) responded to ration. Serial sampling reduced growth rates and hematocrit, but did not change hormone levels. This study shows that IGF-I responds to changed rations within 2-4 weeks in salmonids.  相似文献   

7.
The aim of the study was to investigate the influence of physiologically and pharmacologically increased plasma growth hormone (GH) levels on cholecalciferol metabolism at prepubertal age. Three groups of dogs raised on the same diet were studied from weaning till 21 weeks of age, i.e., small breed dogs (n = 7, control group); large breed dogs with 15-fold greater growth rates compared to the control group (n = 8, LB-group); and small breed dogs treated with pharmacological doses of growth hormone (n = 6, GH-group; 0.5IU GH per kg body per day) from 12 to 21 weeks of age. Excess of GH had the expected anabolic effect on growth rate and phosphate sparing. Increased plasma GH levels in the LB- and GH-groups versus the control group were accompanied by (1) greater plasma insulin-like growth factor I (IGF-I) levels, (2) greater plasma 1,25-dihydroxycholecalciferol (1,25(OH)(2)D(3)) levels, and (3) lower plasma 24,25(OH)(2)D(3) levels. In the LB-group, excess of GH favored plasma 1,25(OH)(2)D(3) levels by decreasing the clearance of 1,25(OH)(2)D(3), whereas in the GH-group by increasing the production of 1,25(OH)(2)D(3). The lowered plasma 24,25(OH)(2)D(3) levels in the LB- and GH-groups were likely attributed to a competitive inhibition of the production of 24,25(OH)(2)D(3) by GH and/or IGF-I.  相似文献   

8.
Responses of plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I), and milk production to subcutaneous (sc) injection(s) of two synthetic human growth hormone-releasing factor (hGRF) analogs were studied in dairy cows. Two mg of each hGRF analog dissolved in 5 ml saline per cow were injected into the shoulder area of each experimental animal, and jugular venous blood samples were collected via an indwelling catheter or by venipuncture. Plasma GH and IGF-I concentrations were measured by radioimmunoassay methods. In dry cows, the mean concentration of plasma GH after a single sc injection of hGRF analogs rose to 22.0-28.3 ng/ml at about 5 h from 1.4-1.7 ng/ml at 0 h (just before injection), and returned to the level before injection after 10-12 h. On the other hand, the plasma IGF-I began to increase after a lag of 4-6 h following a single injection of hGRF analogs, and reached maximum values of 71.1-89.4 ng/ml at 20 h from 43.7-46.4 ng/ml at 0 h. The IGF-I concentration at 24 h after a single injection of hGRF analogs was still higher than the value for the dry cows given saline. In lactating cows, the plasma concentration of GH at 2 h after daily sc injections of hGRF analogs during 14 consecutive days (an injection period) was higher than those for the lactating cows which received saline. Also, during the injection period, the concentration of IGF-I was higher in the lactating cows which received hGRF analog injections than in the cows which received saline injections. During the last 7 days of the injection period, the administration of hGRF analogs increased the mean milk yield by 11-19% in comparison with those for the saline injected cows. A positive correlation was observed between the mean plasma IGF-I concentration and the mean milk yield in the lactating cows treated with hGRF analogs throughout the injection and a postinjection (11 consecutive days after cessation of hGRF analog injection) periods. The results demonstrate that a single sc injection of hGRF analogs stimulates both GH release and the circulating level of IGF-I in dry cows, and that daily sc injections of hGRF analogs over 14 days enhance milk production, and plasma GH and IGF-I levels in lactating cows.  相似文献   

9.
The effect of thyroid hormone deficiency and growth hormone (GH) treatment on hypothalamic GH-releasing hormone (GHRH)/somatostatin (SS) concentrations, GHRH/SS mRNA levels, and plasma GH and somatomedin-C (IGF-I) concentrations were studied in 28- and 35-day-old rats made hypothyroid by giving dams propylthiouracil in the drinking water since the day of parturition. Hypothyroid rats, at both 28 and 35 days of life, had decreased hypothalamic GHRH content and increased GHRH mRNA levels, unaltered SS content and SS mRNA levels, and reduced plasma GH and IGF-I concentrations. Treatment of hypothyroid rats with GH for 14 days completely restored hypothalamic GHRH content and reversed the increase in GHRH mRNA, but did not alter plasma IGF-I concentrations. These data indicate that, in hypothyroid rats, the changes in hypothalamic GHRH content and gene expression are due to the GH deficiency ensuing from the hypothyroid state. Failure of the GH treatment to increase plasma IGF-I indicates that the feedback regulation on GHRH neurons is operated by circulating GH and/or perhaps tissue but not plasma IGF-I concentrations. Presence of low plasma IGF-I concentrations would be directly related to thyroid hormone deficiency.  相似文献   

10.
11.
The effects of growth hormone secretagogues (GHSs) on the teleost somatotropic axis are poorly understood, particularly with respect to insulin-like growth factor-I (IGF-I) and the IGF-binding proteins (IGFBPs). To assess the endocrine and orexigenic responses of rainbow trout (Oncorhynchus mykiss) to GHS treatment, animals were injected with human GHRH(1-29)-amide, KP-102 or rat ghrelin at 0, 1 or 10 pmol/g body mass. Feed intake was tested at 2 and 5 h post-injection and plasma levels of growth hormone (GH), IGF-I and the IGFBPs were determined at 3, 6 and 12 h post-injection. Feed intake was significantly elevated by all of the GHSs tested at both post-injection time points. All GHSs elevated plasma GH levels in a time-dependent manner. Plasma IGF-I levels were elevated by all GHSs at 3 h post-injection, whereas those animals treated with KP-102 and ghrelin exhibited depressions at 6 h. Four IGFBPs were identified in the plasma by western blotting. Levels of the 20 kDa IGFBP decreased over the sampling time. Levels of the 32 kDa IGFBP were significantly depressed by all GHSs tested. Levels of the 42 kDa IGFBP were significantly elevated by all GHSs tested. Plasma levels of the 50 kDa IGFBP was decreased in some treatment groups at 3 h, but elevated by 6 h in the ghrelin-treated groups and elevated in all treatment groups by 12 h post-injection. The endocrine and orexigenic responses demonstrate that GHSs influence the teleost neuroendocrine system beyond short-term actions (<3 h post-injection) on GH release and the responses of the IGFBPs to GHS treatment support this notion and clarify their identification as functional homologues to mammalian IGFBPs.  相似文献   

12.
Ghrelin, a peptide hormone which stimulates growth hormone (GH) release, appetite and adiposity in mammals, was recently identified in fish. In this study, the roles of ghrelin in regulating food intake and the growth hormone (GH)-insulin-like growth factor I (IGF-I) system of rainbow trout (Oncorhynchus mykiss) were investigated in three experiments: 1) Pre- and postprandial plasma levels of ghrelin were measured in relation to dietary composition and food intake through dietary inclusion of radio-dense lead-glass beads, 2) the effect of a single intraperitoneal (i.p.) injection with rainbow trout ghrelin on short-term voluntary food intake was examined and 3) the effect of one to three weeks fasting on circulating ghrelin levels and the correlation with plasma GH and IGF-I levels, growth and lipid content in the liver and muscle was studied. There was no postprandial change in plasma ghrelin levels. Fish fed a normal-protein/high-lipid (31.4%) diet tended to have higher plasma ghrelin levels than those fed a high-protein/low-lipid (14.1%) diet. Plasma ghrelin levels decreased during fasting and correlated positively with specific growth rates, condition factor, liver and muscle lipid content, and negatively with plasma GH and IGF-I levels. An i.p. ghrelin injection did not affect food intake during 12-hours post-injection. It is concluded that ghrelin release in rainbow trout may be influenced by long-term energy status, and possibly by diet composition. Further, in rainbow trout, ghrelin seems to be linked to growth and metabolism, but does not seem to stimulate short-term appetite through a peripheral action.  相似文献   

13.
To examine the physiological significance of plasma ghrelin in generating pulsatile growth hormone (GH) secretion in rats, plasma GH and ghrelin levels were determined in freely moving male rats. Plasma GH was pulsatilely secreted as reported previously. Plasma ghrelin levels were measured by both N-RIA recognizing the active form of ghrelin and C-RIA determining total amount of ghrelin. Mean +/- SE plasma ghrelin levels determined by N-RIA and C-RIA were 21.6 +/- 8.5 and 315.5 +/- 67.5 pM, respectively, during peak periods when plasma GH levels were greater than 100 ng / ml. During trough periods when plasma GH levels were less than 10 ng / ml, they were 16.5 +/- 4.5 and 342.1 +/- 29.8 pM, respectively. There were no significant differences in plasma ghrelin levels between two periods. Next, effect of a GH secretagogue antagonist, [D-Lys-3]-GHRP-6, on plasma GH profiles was examined. There were no significant differences in both peak GH levels and area under the curves of GH (AUCs) between [D-Lys-3]-GHRP-6-treated and control rats. These findings suggest circulating ghrelin in peripheral blood does not play a role in generating pulsatile GH secretion in freely moving male rats.  相似文献   

14.
Effects of fasting on the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis were examined in the tilapia (Oreochromis mossambicus) acclimated to fresh water. Fasting for 2 weeks resulted in significant reductions in body weight, specific growth rate and hepatosomatic index in both males and females. Significant reductions in specific growth rates were observed after 1 and 2 weeks in both sexes, although the decrease in body weight was not significant in the female. A significant reduction was also seen in the condition factor of females after 2 weeks. No change was seen in the gonadosomatic index in either sex. Two weeks of fasting also produced a significant reduction in plasma IGF-I but not in plasma GH, prolactin (PRL(188)) or cortisol. Significant reductions in the hepatic IGF-I mRNA were seen in both sexes. On the other hand, a significant increase was observed in cortisol receptor mRNA in the female liver. Plasma IGF-I levels were correlated significantly with specific growth rate, condition factor and hepatosomatic index, indicating that plasma IGF-I is a good indicator of growth in the tilapia. No change was seen in plasma glucose or osmolality after 2 weeks of fasting. During fasting, tilapia appears to convert metabolic energy from growth to basal metabolism including maintenance of ion and water balance.  相似文献   

15.
Growth hormone (GH) secretion is controlled by growth hormone releasing factor (GRF) but changes in the circulating level of this hormone are difficult to measure. Insulin-like growth factor (IGF-I) is a GH-dependent growth factor which significantly but slightly inhibits stimulated GH release in vitro. We have tested the effects of GRF and IGF-I on GH release in pregnancy, a state in which serum concentrations of GH are elevated and levels of IGF-I are lowered. We have found, in a system of acutely dispersed adenohypophysial cells prepared from pregnant (day 21-23) or control cycling female rats, that adenohypophysial cells from pregnant rats have an increased GH release with GRF. In contrast, IGF-I inhibition is similar but slightly smaller. These altered responses may result in elevated serum GH levels during pregnancy.  相似文献   

16.
We compared the levels of growth hormone (GH) mRNA in the pituitary, plasma GH concentration, and altered phenotype in rats heterozygous and homozygous for an antisense RNA transgene targeted to the rat GH gene, with those in nontransgenic rats. We initially investigated whether the transgene promoter, which is connected to four copies of a thyroid hormone response element (TRE) that increases promoter activity, affected in vivo transgene expression in the pituitary of the transgenic rats. Plasma GH concentration correlated negatively with T, injection in surgically thyroidectomized heterozygous transgenic rats. There was a reduction of about ?35–40% in GH mRNA levels in the pituitary of homozygous animals compared with those in non-transgenic rats. Plasma GH concentration was significantly ?25–32 and ?29–41% lower in heterozygous and homozygous transgenic rats, respectively, compared with that in nontransgenic animals. Furthermore, the growth rates in homozygous transgenic rats were reduced by ?72–81 and ?51–70% compared with those of their heterozygous and nontransgenic littermates, respectively. The results of these studies suggested that the biological effect of GH in vivo is modulated dose-dependently by the antisense RNA transgene. The rat GH gene can therefore be targeted by antisense RNA produced from a transgene, as reflected in the protein and RNA levels. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Several studies in patients with acromegaly or growth hormone (GH) deficiency suggest a stimulatory effect of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on the renin-angiotensin-aldosterone system (RAAS). We analyzed the association of serum IGF-I with plasma aldosterone and the aldosterone-to-renin ratio in a large sample from the general population. In addition to serum IGF-I levels, we also considered the IGF-I-to-IGF binding protein (IGFBP)-3 ratio. A total of 1 504 men and 1 566 women aged 25-88 were selected from the first follow-up of the population-based Study of Health in Pomerania. Plasma aldosterone and renin concentrations, as well as serum IGF-I and IGFBP-3 levels were determined with immunoassays. Analyses of variance and linear regression analyses were performed. We found positive associations between serum IGF-I or the IGF-I/IGFBP-3 ratio with plasma aldosterone in women but not in men. Plasma aldosterone levels increased by 2.91 ng/l per IGF-I standard deviation (SD) and by 2.17 ng/l per IGF-I/IGFBP-3 SD. The associations remained significant after exclusion of subjects taking RAAS-altering medication and of subjects with serum IGF-I levels and aldosterone-to-renin ratios outside the reference range. We conclude that, serum IGF-I and the IGF-I/IGFBP-3 ratio are associated with plasma aldosterone levels in women but not in men from the general population.  相似文献   

18.
In this experiment, we assessed the effect of amino acid (AA) intake restriction in entire male Yorkshire pigs between 15 and 38 kg BW (restriction phase) on BW gain, body composition and plasma levels of blood urea nitrogen (BUN), cortisol, insulin-like growth factor I (IGF-I), growth hormone (GH) and leptin during the subsequent re-alimentation phase. During the restriction phase, 36 pigs were allotted to one of two dietary treatments: adequate AA intake (control) or AA-limiting diets (AA-30%). Thereafter, pigs were fed common non-limiting diets up to 110 kg BW. Throughout the experiment, pigs were scale-fed at 90% of the estimated voluntary daily digestible energy intake. At the end of the restriction phase, pigs on AA-30% had lesser BW gain (650 v. 784 g/day; P < 0.001), loin area (LA; 12.2 v. 14.2 cm2; P < 0.001), BUN (4.6 v. 6.3 mg/dl; P < 0.02), lesser plasma levels of IGF-I (440 v. 640 ng/m; P < 0.001) and cortisol (8.2 v. 19.2 μg/dl; P < 0.001), greater backfat thickness (BF; 7.56 v. 6.56 mm; P < 0.02), and greater plasma levels of leptin (2.7 v. 1.8 ng/ml; P = 0.027) and GH (3.3 v. 2.0 ng/ml; P = 0.05) than pigs on control. During the re-alimentation phase, previously restricted pigs showed full compensatory growth (CG) in terms of BW gain (1170 v. 1077 g/day; P < 0.002), whole-body protein deposition (Pd) (179 v. 163 g/day; P < 0.001) as well as physical and chemical body composition (whole-body lipid to body protein mass ratio, LB/PB; 1.14 v. 1.15; P > 0.10). Besides GH at 45 kg BW (4.2 v. 2.4 ng/ml; P = 0.066), there were no effects of previous AA intake restriction on leptin, IGF-I and BUN during the re-alimentation phase (P > 0.10). Plasma cortisol and IGF-I levels may act as an indicator of AA-induced restriction in Pd in growing pigs. Plasma BUN level does not appear as a sensitive indicator for compensatory Pd. Plasma leptin and GH levels allow for the involvement of the brain in controlling chemical body composition. Full CG was observed during the energy-dependent phase of Pd in growing pigs and might be driven by a target LB/PB, possibly mediated via plasma leptin, IGF-I and GH levels.  相似文献   

19.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

20.
A study was undertaken to examine the responses of three Atlantic salmon Salmo salar strains to growth hormone (GH) treatment. A positive growth response to sustained-release GH implants was found in two wild strains (Namsen and Imsa) as well as one domesticated strain (AquaGen). The data revealed that the growth-selected AquaGen strain has further growth potential, however, a stronger growth response was observed in the wild strains which outgrew the domesticated strain after GH treatment. These observations suggest that some growth potential may have been lost during the selection for rapid growth in the AquaGen strain. In September, the parr were GH implanted and in December sampled for plasma GH and insulin-like growth factor I (IGF-I) levels, liver, muscle and gill GH receptor, IGF-I mRNA levels, gill Na+,K+-ATPase activity, muscle and liver lipid content and body silvering. Low temperature and seasonal growth cessation probably explains the relatively limited GH effects found. Body silvering in all strains was positively correlated to size. GH increased IGF-I plasma levels in the Namsen strain inspite of liver IGF-I mRNA levels being lower in GH-treated fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号