首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the approach of TOTAL Exploration & Production concerning the protection of biodiversity during oil and gas exploration and production activities, particularly in sensitive environments such as tropical islands. This approach was developed according to three stages: knowing biodiversity, protecting biodiversity and, going further, by contributing to scientific research. This three step approach is embedded in an environment protection policy and an associated set of actions already implemented for many years. Knowledge of the biodiversity is an indispensable preliminary to evaluating the sensitivity of a site which is likely to be impacted by an industrial activity. TOTAL E&P Indonésie (TI) has been operating for over 30 years in the East part of Borneo Island in areas of increasing sensitivity with respect to mangrove ecosystems; for example the Mahakam delta which includes the Tambora, Handil and Tunu fields. This area was initially covered by dense mangrove vegetation. Regular biodiversity surveys in the delta, especially for fishes, birds and benthos, have allowed TI to witness the progressive changes occurring in the delta. Reducing significant impacts and conserving biodiversity is considered as an integral part of sustainable development. With regard to the Mahakam delta, in the last decades there has been a marked increase of local population activities and deforestation due to shrimp-culture development. TI has made significant efforts with environmental management actions to protect the mangrove ecosystem through several environmental programs such as minimizing land clearing and reinstating cleared areas. The programs have involved local communities and other stakeholders such as NGO’s and governmental bodies. Contributing to scientific knowledge of biodiversity is of mutual interest to both science and industry. The TOTAL Group, through its Foundation for Biodiversity and the Sea, has supported the establishment of a comprehensive inventory of the marine biodiversity of the island of Panglao, situated southwest of Bohol, Philippines. The Panglao Marine Biodiversity project was driven in collaboration between the Muséum National d’Histoire Naturelle, Paris, and the University of San Carlos, Cebu City, Philippines. Recently, another major biodiversity inventory has been also supported by the TOTAL Foundation: the Santo 2006 biodiversity project. On this island, located in the Vanuatu archipelago, the research program has focused on four themes: marine, forest, karstic environments and alien species. Furthermore, TOTAL in partnership with IFREMER, a French oceanographic research centre, has also developed a comprehensive biodiversity research and development program dedicated to Deep Sea ecosystems. Even if initially focused off Western Africa, this emerging issue is also of concern in most of the tropical areas in the world where deep offshore environments are present.  相似文献   

2.
Occurrences of extreme events are likely to cause major decline in global biodiversity. In one such event, on December 26, 2004 tsunami caused extensive damage and irreparable losses to the ecology and biodiversity of low-lying areas of the countries located around the Indian Ocean region. Archipelago of Andaman and Nicobar Islands, one of the richest centre of endemism and biodiversity in the Indo-Malayan region, suffered great loss of forests and coastal biodiversity owing to its closeness to the epicenter of tsunami, i.e. just off the coast of Indonesia. There is little insight into the resilience and rate of recovery pattern of tropical coastal habitats consequent to catastrophic impacts of tsunami. It’s important to study the impacts of tsunami on the forest and biodiversity in order to suggest mitigation, restoration measures and long-term conservation planning. Here we have assessed the immediate after-effects of December 26, 2004 tsunami on the forests and areas prioritized for biodiversity conservation analyzing pre and post tsunami satellite imageries. The effect of topographic patterns of Island’s coastal areas and their distance from the epicenter of tsunami with respect to changes in the forests and different levels of biologically rich areas modeled for prioritization for different groups of Islands in Nicobar has been studied. Great Nicobar accounted for higher proportion of total forest area damaged and submerged in Nicobar, followed by Central Nicobar and Car Nicobar. Mangroves, littoral forest, beach forest and low land swamps and Syzygium swamps were most affected. Study brings out spatially explicit scenario of damaged, submerged and lost forest areas and corresponding area statistics, vital for understanding and mitigating medium and long term effects of tsunami an extreme event.  相似文献   

3.
常云蕾  廖静娟  张丽 《生态学报》2024,44(9):3830-3843
红树林是全球重要的生态系统,了解红树林的时空变化特征及演变趋势对开展红树林的保护、恢复及可持续管理具有重要意义。基于谷歌地球工程(Google Earth Engine,GEE)云平台,利用全球红树林分布数据和陆地卫星(Landsat)系列光学影像特征指数数据,结合Theil-Sen中值趋势分析、Mann-Kendall检验、Hurst指数等方法,分析了全球红树林的时空分布特征、时空演变趋势及其可持续特征。结果表明:1990-2020年全球红树林面积呈先下降后上升趋势,总面积减少52174.18km2,年平均流失率达1.2%,红树林面积减少最多的地区为东南亚,其次为澳大利亚和新西兰、南美洲和东南非洲;红树林呈退化趋势变化的面积(81.44%)明显多于改善区域的面积(17.43%),其中澳大利亚和新西兰的退化趋势最为明显;2015-2020年全球红树林变化趋势有所改善,有73.85%的区域在未来是可持续的,持续改善区域面积(38.58%)大于持续退化区域面积(33.06%),且改善区域的可持续性明显高于不可持续性,表明2020年之后全球红树林整体上呈改善趋势变化。全球红树林时空变化特征和演变模式,可为生物多样性保护、沿海经济发展、生态环境的可持续改善提供重要支撑,对评估联合国2030可持续发展目标实现的状况具有重要影响。  相似文献   

4.
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity.  相似文献   

5.
红树林生态系统遥感监测研究进展   总被引:9,自引:1,他引:9  
孙永光  赵冬至  郭文永  高阳  苏岫  卫宝泉 《生态学报》2013,33(15):4523-4538
随着现代遥感技术的迅速发展,遥感监测已经成为红树林生态系统变化监测的重要手段和方法。从遥感技术在生态系统变化监测应用领域入手,综述了国内外红树林遥感监测的发展历程,系统总结了遥感技术在红树林湿地动态、种间分类、群落结构(叶面积指数、冠幅、树高等)、生物量、灾害灾情(病虫害、风暴潮等)、景观格局动态、驱动力、红树林湿地保护与管理等领域应用现状,归纳了不同应用领域遥感监测的理论、方法及研究现状。指出我国在红树林遥感监测中存在的不足。提出红树林遥感监测应在分类标准体系规范化、分类精度提升、红树林生态学特征参数(物种多样性、优势度等)、生态系统环境空间演变过程及遥感监测的尺度效应方面加大研究力度。充分发挥区域综合监测模型在红树林生态系统变化遥感监测中的作用。  相似文献   

6.
红树林湿地恢复研究进展   总被引:18,自引:4,他引:14  
红树林是生长在热带、亚热带隐蔽潮间带的独特植物群落,在过去几十年内因人口压力和经济发展而遭到严重破坏,质量下降,面积萎缩.近年来,尽管世界各地采取了一系列措施进行红树林的恢复,然而由于缺乏造林技术资料、造林成活率低下、经营管理粗放,加上人为干扰和自然灾害的影响,红树林面积增长缓慢;造林成活率低依然是制约红树林湿地恢复的主要因素.总结了近年来国内外红树林湿地恢复四个方面的研究成果,即(1)宜林地选择,包括温度、底质、水文的环境条件研究;(2)树种选择与引种,包括乡土树种的选用和外来树种的引种状况;(3)栽培技术的应用,包括造林栽培技术与育苗技术,造林成本的比较;(4)植后管护及监测,包括幼林巡护、病虫害防治、生态监测,结合野外调查的结果,综述了红树林恢复的一些基本原理与应用实例.根据我国红树林湿地恢复的现状,提出今后红树林恢复研究的重点为:开展"退塘还林"工程,监测红树林湿地生态系统生物多样性的恢复,深入探讨红树林的化感作用,营造红树林混交林,实现红树林的生态恢复.  相似文献   

7.
The threat to tropical forests is often gauged in terms of deforestation rates and the total area remaining. Recently, however, there has been a growing realization that forest can appear intact on a satellite image yet be biologically degraded or vulnerable to degradation. The array of direct threats to humid tropical forest biodiversity, in addition to deforestation, includes: selective extraction of plants; selective extraction of animals; biological invasion; fragmentation; climate change; changing atmospheric composition; and increasing tree turnover rates. The threats are linked to one another by a poorly understood network of causality and feedback effects. Moreover, their potential impacts on forest biodiversity are hard to assess because each threat is as likely to precipitate indirect effects as direct effects, and because several threats are likely to interact synergistically with one another. In spite of the uncertainties, it is clear that the biological health of tropical forests can become seriously degraded as a result of these threats, and it is unlikely that any tropical forest will escape significant ecological changes. Some groups of plants and animals are likely to benefit at the expense of others. Species diversity is expected to decline as a consequence of the changes in forest ecology. In the 21st century scientists and conservationists will be increasingly challenged to monitor, understand, prevent and head off these threats.  相似文献   

8.
Three North African coastal lagoons were selected as primary sites for integrated ecological and hydrological monitoring and modelling as part of the MELMARINA Project (see Flower & Thompson, 2009). The three sites, Merja Zerga (13.2 km2, Morocco), Ghar El Melh (35.6 km2, Tunisia) and Lake Manzala (c. 700 km2, Egypt), are permanent water bodies with at least one well-defined connection with the sea. This article provides an account of each lagoon’s physical characteristics and recent development including the impacts of human activities. The two sites on the Mediterranean (Ghar El Melh and Lake Manzala) are characterised by small tidally driven variations in water level whilst Merga Zerga, on the Atlantic coast, experiences large tidally induced water level variations and so contains large inter-tidal environments. All the three lagoons receive freshwater inflows from their landward margins, varying in magnitude, seasonality and ecological significance. Freshwater inflows from drains strongly influence ecological conditions within Lake Manzala. All the three lagoons have significant biodiversity interest, especially for resident and migratory birds as well as fish, and support local human populations. Each lagoon experienced significant changes during the twentieth century possibly affecting declines in biodiversity value. These largely resulted from agricultural expansion and intensification and include reclamation and hydrological modifications which have both decreased freshwater inflows due to upstream diversions (Merja Zerga and Ghar El Melh) and increased the influx of freshwater through the return of irrigation drainage (Merja Zerga and Lake Manzala). All three sites experienced nutrient enrichment due to agricultural runoff and discharge of domestic wastewater. Industrial waste discharge is a particular, but not exclusive, problem for Lake Manzala. Problems of water quantity and quality will increase through the twenty-first century with increasing demands for water while effects of climate change will enhance freshwater scarcity. Conflicts between human and environmental uses of water will increase and unless improvements in water use efficiency and wastewater treatment can be brought about wetlands including coastal lagoons are likely to suffer further loss and degradation. These problems will be compounded by sea level rise. Guest editors: J. R. Thompson & R. J. Flower Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons  相似文献   

9.
外来红树植物无瓣海桑引种及其生态影响   总被引:3,自引:0,他引:3  
彭友贵  徐正春  刘敏超 《生态学报》2012,32(7):2259-2270
无瓣海桑是我国首个从国外引进并大面积推广种植的红树植物,生长快,适应性强,已成为华南沿海红树林恢复造林的主要树种。但近年来无瓣海桑引种已引起较大争论,焦点是无瓣海桑是否会对乡土红树植物生长产生不利影响,是否会造成生态入侵,是否应限制推广种植。根据引种以来的研究成果,对无瓣海桑的生态适应性、种植技术、生产力与物质循环、生态影响等四个方面的引种研究进行综述;分析无瓣海桑引种对乡土红树植物生长的影响和生态入侵可能性,对无瓣海桑引种造林提出建议。指出今后无瓣海桑引种的的研究重点为:无瓣海桑引种的生态监测与入侵评估;对滩涂水生生物的影响;与乡土红树植物优化配置的混交种植技术;无瓣海桑的资源化利用。  相似文献   

10.
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate‐change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process‐oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large‐scale remote‐sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate‐change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.  相似文献   

11.
Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species'' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.  相似文献   

12.
红树林生态系统服务功能研究综述   总被引:10,自引:1,他引:9  
红树林湿地是热带亚热带地区陆地生态系统向海洋生态系统过渡的重要生态系统,具有重要的生态环境服务功能。由于其特殊的生态功能和较高的经济、社会价值,近年来成为湿地生态学研究的热点。本文对红树林生态系统在生产有机物、维持热带亚热带河口生态系统、降低风速以及海水流速、防治和减轻灾难、截留碎屑形成陆地、保护海堤、吸附污染物净化水体、提供多种生境、维护生物多样性,以及形成优美的环境开展生态旅游等几个方面的生态服务功能进行了综述,旨在为红树林资源的保护与合理利用提供参考。同时指出,对红树林的上述生态服务功能的内在生态学过程与效应及其价值评估尚需要开展更深入的研究。  相似文献   

13.
Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be considered in coastal management especially with respect to their importance as a nutrient source for other ecosystems and organisms.  相似文献   

14.
Depletion of the mangroves of Continental Asia   总被引:7,自引:0,他引:7  
Blasco  F.  Aizpuru  M.  Gers  C. 《Wetlands Ecology and Management》2001,9(3):255-266
The mangroves located around the Bay of Bengal and along the coast ofSouth China Sea are of special interest for many reasons. This coastlinereceives three major tropical rivers (Ganges, Irrawaddy, Mekong) and it hasthe world's largest mangrove stands in a single block (the Sunderbans). Thecontrasted climatic conditions from sub-arid (southeastern India), to moist(coastal Cambodia), and the extreme diversity of human impacts in one ofthe world's highest population densities (West Bengal in India andBangladesh), have created a mosaic of mangrove types that are floristicallyrich and with different histories, different ecological frameworks and distinct evolutionary trends.For the first time, we draw together remote sensing data along withessential structural and physiognomic parameters of mangrove forest areas.We have devised a sufficiently accurate coastal mapping methodologyproviding statistics on the actual areal extent of mangrove types andsub-types, both at local and continental scales. Some results are entirelynew, and others provide comparison with existing data. The exact extentof mangroves in Myanmar was previously unknown. Using remote sensingwe also demonstrate the magnitude of the ongoing deforestation in thiscountry. The current location and status of mangrove forests in the affectedarea are described using the methodology which is also being applied inother sites around the world.  相似文献   

15.
We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change‐induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate‐based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape‐scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh‐to‐mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.  相似文献   

16.
论生态保护红线的类型划分与管控   总被引:2,自引:0,他引:2  
生态保护红线划定的目的是为了保护支撑人类经济社会可持续发展的自然生态系统, 实施最为严格的管控措施, 不断改善生态系统服务功能。本文根据《环境保护法》规定和国内相关研究与实践积累, 明确了生态保护红线的概念, 提出了以重点生态功能区保护红线、生态敏感区/脆弱区保护红线、禁止开发区保护红线为核心的生态保护红线体系构成。并进一步将重点生态功能区保护红线区分为陆地重点功能区(包括水源涵养区、水土保持区、防风固沙区和生物多样性维护区)和海洋重点功能区(包括海洋水产种质资源保护区、重要滨海湿地、特殊保护海岛、珍稀濒危物种集中分布区、重要渔业水域等); 将生态敏感区/脆弱区保护红线区分为陆地生态敏感区/脆弱区(土地沙化区、水土流失区、石漠化区、盐渍化区)和海洋生态敏感/脆弱区(海岸带自然岸线、红树林、重要河口、重要砂质岸线、沙源保护海域、珊瑚礁及海草床等); 禁止开发区则包含了自然保护区、世界自然文化遗产地、风景名胜区、森林公园、地质公园、湿地公园、饮用水水源地等类型。基于国家关于生态保护红线管控的最新要求, 提出了分级划定、分类管理的生态保护红线基本管控思路与措施, 按照管理分级和围绕生态功能保护来确定具体管控措施, 旨在为增强生态保护效果, 优化国土空间开发格局, 促进生态文明建设提供理论依据。  相似文献   

17.
红树林生长于受潮汐影响的海滨特殊生境,具有重要的生态功能及应用价值。红树植物的水分利用特点一直是研究热点。由于受环境盐分影响,红树植物水势普遍较低;水分运输系统抗气穴化能力极强;水分利用保守,用水量处于同径级的热带陆生树木用水量的低值范围;表型可塑性大,可通过耐旱、耐盐和多样的水分管理策略适应潮间带环境;水分运输效率不低,能在环境条件适宜时进行高效的光合合成。本文通过大量的文献分析,综述了红树植物的水分关系特点、水分和盐分管理策略,对未来从多角度、结合新研究技术的红树植物水分关系研究进行了展望。  相似文献   

18.
中国红树林生态系统保护空缺分析   总被引:4,自引:0,他引:4  
红树林作为海岸带重要的生态系统类型,具有维持海岸生物多样性、防风固岸、促淤造陆等重要的生态功能,在气候变化和快速城市化背景下认识红树林受保护状况具有重要意义。以基于遥感解译的红树林分类数据为基础,通过空缺分析,分析了我国红树林的就地保护状况,结果显示我国分布的红树林总面积为264 km~2(尚不含我国港、澳、台的统计数据),其中61.4%在自然保护区内受到保护。从红树林分布的主要省份来看,在海南省分布的红树林面积较少但保护比例高,广西和广东省分布的红树林面积大但受保护面积比例相对较低。在3种红树林类型中,红树-木果楝林和红海榄-木榄林分布面积较小,但受保护的面积都在90%以上,秋茄-桐花树-白骨壤林分布的面积最大,但受保护的面积为52.6%。研究提出自然保护区外红树林分布的关键区域,并建议通过划定生态保护红线等方式来进行保护。  相似文献   

19.

Background

Large-scale inter-basin water transfer (IBWT) projects are commonly proposed as solutions to water distribution and supply problems. These problems are likely to intensify under future population growth and climate change scenarios. Scarce data on the distribution of freshwater fishes frequently limits the ability to assess the potential implications of an IBWT project on freshwater fish communities. Because connectivity in habitat networks is expected to be critical to species'' biogeography, consideration of changes in the relative isolation of riverine networks may provide a strategy for controlling impacts of IBWTs on freshwater fish communities.

Methods/Principal Findings

Using empirical data on the current patterns of freshwater fish biodiversity for rivers of peninsular India, we show here how the spatial changes alone under an archetypal IBWT project will (1) reduce freshwater fish biodiversity system-wide, (2) alter patterns of local species richness, (3) expand distributions of widespread species throughout peninsular rivers, and (4) decrease community richness by increasing inter-basin similarity (a mechanism for the observed decrease in biodiversity). Given the complexity of the IBWT, many paths to partial or full completion of the project are possible. We evaluate two strategies for step-wise implementation of the 11 canals, based on economic or ecological considerations. We find that for each step in the project, the impacts on freshwater fish communities are sensitive to which canal is added to the network.

Conclusions/Significance

Importantly, ecological impacts can be reduced by associating the sequence in which canals are added to characteristics of the links, except for the case when all 11 canals are implemented simultaneously (at which point the sequence of canal addition is inconsequential). By identifying the fundamental relationship between the geometry of riverine networks and freshwater fish biodiversity, our results will aid in assessing impacts of IBWT projects and balancing ecosystem and societal demands for freshwater, even in cases where biodiversity data are limited.  相似文献   

20.
Shifting cultivation is a widespread practice in tropical forested areas that policy makers often regard as the major cause of forest degradation. Secondary fallow forests regrowing after shifting cultivation are generally not viewed as suitable for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co‐benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号