首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) from rabbit skeletal muscle is inhibited by pyridoxal-5′-phosphate. The inhibition observed in steady-state kinetic studies is competitive with respect to dihydroxyacetone phosphate and uncompetitive with respect to NADH. Similar inhibition was found for a series of related compounds which in order of increasing effectiveness of inhibition were: 4-deoxypyridoxine < pyridoxal < pyridoxic acid < pyridoxal-5′-phosphate < pyridoxine and pyridoxamine-5′-phosphate. Pyridoxal-5′-phosphate also reacts slowly with the enzyme to produce an adduct which upon treatment with sodium borohydride results in irreversible modification of the enzyme. The nature of the adduct was investigated by titration of the enzyme with pyridoxal-5′-phosphate, uv-visible and fluorescence spectroscopy, amino acid analysis, and peptide mapping. All such studies are consistent with a single, highly reactive lysyl residue on each enzyme subunit. Protection of the lysyl residue against modification was afforded by the presence of NADH. The modified enzyme, on the other hand, possessed kinetic properties similar to the native enzyme including a nearly identical inhibition constant for pyridoxal-5′-phosphate. Pyridoxal-5′-phosphate, therefore, seems to have two sites of interaction on the enzyme: a reversible binding site competitive with substrate and a Schiff-base site protected by NADH. These properties of glycerol-3-phosphate dehydrogenase set it apart from functionally similar enzymes.  相似文献   

2.
The growth of Lactobacillus casei strain Cl-16 at the expense or ribitol was inhibited if the non-metabolizable substrate xylitol was included in the medium at concentrations of 6 mM or greater. At these concentrations, xylitol, did not competitively inhibit ribitol transport. The cessation of growth was caused by the intracellular accumulation of xylitol-5-phosphate, which occurred because growth on ribitol had gratuitously induced a functional xylitol-specific phosphotransferase system but not the enzymes necessary for the further metabolism of xylitol-5-phosphate. Eventually, the cells overcame the xylitol-mediated inhibition by repressing the synthesis of enzyme II of the xylitol phosphotransferase system so that xylitol-5-phosphate would no longer be accumulated within the cell.  相似文献   

3.
A continuous spectrophotometric procedure for following the conversion of d-xylulose 5-phosphate to d-ribulose 5-phosphate by d-ribulose 5-phosphate 3-epimerase is described. Transketolase, ribose 5-phosphate ketol isomerase, glycerol 3-phosphate dehydrogenase, and triose phosphate isomerase were used as coupling enzymes and both practical and theoretical criteria for the validity of a coupled assay were satisfied. The initial velocity of the reaction was determined at a number of d-xylulose 5-phosphate concentrations and Km and V values of 0.15 ± 0.02 (SEM) mm d-xylulose 5-phosphate and 10.5 ± 0.6 (SEM) μmoles/min/mg protein were calculated from a reciprocal plot.  相似文献   

4.
Pentalenolactone (PL) irreversibly inactivates the enzyme glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) and thus is a potent inhibitor of glycolysis in both procaryotic and eucaryotic cells. We showed that PL-producing strain Streptomyces arenae TU469 contains a PL-insensitive glyceraldehyde-3-phosphate dehydrogenase under conditions of PL production. In complex media no PL production was observed, and a PL-sensitive glyceraldehyde-3-phosphate dehydrogenase, rather than the insensitive enzyme, could be detected. The enzymes had the same substrate specificity but different catalytic and molecular properties. The apparent Km values of the PL-insensitive and PL-sensitive enzymes for glyceraldehyde-3-phosphate were 100 and 250 microM, respectively, and the PL-sensitive enzyme was strongly inhibited by PL under conditions in which the PL-insensitive enzyme was not inhibited. The physical properties of the PL-insensitive enzyme suggest that the protein is an octamer, whereas the PL-sensitive enzyme, like other glyceraldehyde-3-phosphate dehydrogenases, appears to be a tetramer.  相似文献   

5.
The activities of glycerol 3-phosphate dehydrogenase (EC 1.1.1.8), glycerol kinase (EC 2.7.1.30), lactate dehydrogenase (EC 1.1.1.27), "malic' enzyme (L-malate-NADP+ oxidoreductase; EC 1.1.1.40) and the beta-oxoacyl-(acyl-carrier protein) reductase component of the fatty acid synthetase complex were measured in nine hepatoma lines (8 in rats, 1 in mouse) and in the livers of host animals. With the single exception of Morris hepatoma 16, which had unusually high glycerol 3-phosphate dehydrogenase activity, the activities of glycerol 3-phosphate dehydrogenase and glycerol kinase were highly correlated in normal livers and hepatomas (r = 0.97; P less than 0.01). The activities of these two enzymes were not strongly correlated with the activities of any of the other three enzymes. The primary function of hepatic glycerol 3-phosphate dehydrogenase appears to be in gluconeogenesis from glycerol.  相似文献   

6.
Glyceraldehyde-3-phosphate dehydrogenase was purified from carp white muscle. On CM-Sephadex chromatography two well separated active peaks were obtained. Both of them show a single protein band on gel electrophoresis and have the same molecular and kinetic properties; they differ only by the amount of bound NAD, the enzyme in the second peak being coenzyme-free. Significant differences were observed between the properties of carp and pig muscle enzymes. Glyceraldehyde-3-phosphate dehydrogenase from carp is more resistant to heat and proteolytic inactivation. Moreover NAD does not protect it against inactivation. Only one sulphydryl group per subunit is able to react with 5,5'-dithiobis(2-nitrobenzoate), irrespective of the kind of the buffer. The structure of glyceraldehyde-3-phosphate dehydrogenase from white muscle of carp seems to be more compact and therefore more inaccessible to some agents than that of the enzyme from pig muscle.  相似文献   

7.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

8.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

9.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibits glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides competitively with respect to glucose 6-phosphate and noncompetitively with respect to NAD+ or NADP+, with Ki = 40 microM in the NADP-linked and 34 microM in the NAD-linked reaction. Incubation of glucose-6-phosphate dehydrogenase with [3H]PLP-AMP followed by borohydride reduction shows that incorporation of 0.85 mol of PLP-AMP per mol of enzyme subunit is required for complete inactivation. Both glucose 6-phosphate and NAD+ protect against this covalent modification. The proteolysis of the modified enzyme and isolation and sequencing of the labeled peptides revealed that Lys-21 and Lys-343 are the sites of PLP-AMP interaction and that glucose 6-phosphate and NAD+ protect both lysyl residues against modification. Pyridoxal 5'-phosphate (PLP) also modifies Lys-21 and probably Lys-343. Lys-21 is part of a highly conserved region that is present in all glucose-6-phosphate dehydrogenases that have been sequenced. Lys-343 corresponds to an arginyl residue in other glucose-6-phosphate dehydrogenases and is in a region that is less homologous with those enzymes. PLP-AMP and PLP are believed to interact with L. mesenteroides glucose-6-phosphate dehydrogenase at the glucose 6-phosphate binding site. Simultaneous binding of NAD+ induces conformational changes (Kurlandsky, S. B., Hilburger, A. C., and Levy, H. R. (1988) Arch. Biochem. Biophys. 264, 93-102) that are postulated to interfere with Schiff's-base formation with PLP or PLP-AMP. One or both of the lysyl residues covalently modified by PLP or PLP-AMP may be located in regions of the enzyme undergoing the NAD(+)-induced conformational changes.  相似文献   

10.
A simple procedure which yields pure xylitol-5-phosphate is described. A cell extract of Lactobacillus casei Cl-16 from a 6-liter culture was used to synthesize up to 70 mg of xylitol-5-phosphate overnight from xylitol and phosphoenolpyruvate via a xylitol phosphoenolpyruvate:phosphotransferase system with a 53% yield. Centrifugation, filtration, precipitation as a barium salt, and ion-exchange batch chromatography permitted recovery of nearly 90% of the phosphorylated product synthesized. Thin-layer chromatography and enzymatic analysis indicated a purity level of more than 99%. The method was used to synthesize [U-14C]xylitol-5-phosphate, and it is suitable for the synthesis of many other nonmetabolizable sugar phosphates.  相似文献   

11.
1. The metabolic role of hepatic NAD-linked glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) was investigated vis-a-vis glyceride synthesis, glyceride degradation and the maintainence of the NAD redox state. 2. Five-week-old chickens were placed on five dietary regimes: a control group, a group on an increased-carbohydrate-lowered-fat diet, a group on a high-fat-lowered-carbohydrate diet, a starved group and a starved-refed group. In each group the specific activity (mumol/min per g wet wt. of tissue) of hepatic glycerol 3-phosphate dehydrogenase was compared with the activities of the beta-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, glycerol kinase (EC 2.7.1.30) and lactate dehydrogenase (EC 1.1.1.27). 3. During starvation, the activities of glycerol 3-phosphate dehydrogenase, glycerol kinase and lactate dehydrogenase rose significantly. After re-feeding these activities returned to near normal. All three activities rose slightly on the high-fat diet. Lactate dehydrogenase activity rose slightly, whereas those of the other two enzymes fell slightly on the increased-carbohydrate-lowered-fat diet. 4. The activity of the beta-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, a lipid-synthesizing enzyme, contrasted strikingly with the other three enzyme activities. Its activity was slightly elevated on the increased-carbohydrate diet and significantly diminished on the high-fat diet and during starvation. 5. The changes in activity of the chicken liver isoenzyme of glycerol 3-phosphate dehydrogenase in response to dietary stresses suggest that the enzyme has an important metabolic role other than or in addition to glyceride biosynthesis.  相似文献   

12.
Modification by pyridoxal-5-phosphate of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) purified from Saccharomyces cerevisiae produces an inactivation effect, partially reversible by dilution in the presence of substrates. Spectroscopic analysis of the enzyme pyridoxal-5-phosphate complex reduced with NaBH4 provides the values expected for the binding of the aldehydic group to Lys residue. One Lys residue appears to be responsible for the observed enzyme inactivation, and the presence of the phosphate group is required for the effect. Besides the change of activity, the binding of pyridoxal-5-phosphate to the enzyme causes an increase in susceptibility to degradation by the intracellular yeast proteinase A at pH 7.6.  相似文献   

13.
Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer. The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.  相似文献   

14.
D-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and D-glucitol-6-phosphate dehydrogenase (EC 1.1.1.140) were purified to apparent homogeneity in good yields from Escherichia coli. The amino acid compositions, N-terminal amino acid sequences, sensitivities to chemical reagents, and catalytic properties of the two enzymes were determined. Both enzymes showed absolute specificities for their substrates. The subunit molecular weights of mannitol-1-phosphate and glucitol-6-phosphate dehydrogenases were 40,000 and 26,000, respectively; the apparent molecular weights of the native proteins, determined by gel filtration, were 40,000 and 117,000, respectively. It is therefore concluded that whereas mannitol-1-phosphate dehydrogenase is a monomer, glucitol-6-phosphate dehydrogenase is probably a tetramer. These two proteins differed in several fundamental respects.  相似文献   

15.
The specific activity and total activity of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) under conditions of complete cell breakage fall 10-20-fold during a 3h period of spore germination and outgrowth. The spores must germinate (lose refractility), but do not have to undergo outgrowth, for the loss of activity to occur. Glucose 6-phosphate dehydrogenase activity from cells as any stage of development is completely stable in extracts at 4 degrees C or 30 degrees C. All of the enzyme activity is found in a soluble (50000g supernatant) fraction and remains completely soluble throughout development. Soluble protein and total cellular protein remain constant for about 2h. Proteinases could not be detected or protein turnover demonstrated during the morphogenetic process. Phenylmethanesuophony fluoride and o-phenanthroline, inhibitors of proteolytic enzymes, do not prevent glucose 6-phosphate dehydrogenase inactivation when added to whole cells. Mixing experiments show no inhibitor of glucose 6-phosphate dehydrogenase to be present in late-stage cells. The enzyme is not excreted into the culture medium. Chloramphenicol and rifampicine immediately stop protein synthesis and development but not the inactivation of glucose 6-phosphate dehydrogenase. NaN3, 2,4-dinitrophenol or anaerobiosis immediately stop development and prevent the loss of enzyme activity. A requirement for metabolic energy is therefore probable. Extracts of spores pre-labelled with L[14C]leucine were made at various stages of morphogenesis and subjected to polyacrylamide-gel electrophoresis. Glucose 6-phosphate dehydrogenase, which was identified by a specific stain, did not lose 14C label, and therefore may not be degraded during the inactivation process.  相似文献   

16.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

17.
Human erythrocyte glucose-6-phosphate dehydrogenase contains a reactive lysyl residue, which can be labelled with pyridoxal 5'-phosphate. The binding of one mole of pyridoxal 5'-phosphate per mole of enzyme subunit produces substantial inactivation. The substrate glucose-6-phosphate prevents the loss of activity, suggesting that the reaction site is close to the substrate-binding site. A tryptic peptide containing the pyridoxal-5'-phosphate-binding lysyl residue has been isolated and characterised. The reactive lysyl residue has been identified in the glucose-6-phosphate dehydrogenase amino acid sequence. Comparison with glucose-6-phosphate dehydrogenase from other sources shows a high homology with a peptide containing a reactive lysyl residue, isolated from the enzyme from Saccharomyces cerevisiae; glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides also contains a region highly homologous with the sequence around the reactive lysyl residue in the human enzyme. The results of this communication provide the first direct evidence for the association of an essential catalytic function with a specific region of the molecule of human erythrocyte glucose-6-phosphate dehydrogenase.  相似文献   

18.
Glyceraldehyde 3-phosphate dehydrogenase, a tetramer of 140,000 Da, interacts with in vitro reconstituted microtubules. It results in a partial inhibition of the activity of the microtubule-bound enzyme. After cold depolymerization of the microtubule-glyceraldehyde 3-phosphate dehydrogenase complexes, a fraction of the enzyme is recovered in an active form in the disassembly supernatant; the other fraction devoid of activity, identified by polyacrylamide gel electrophoresis, remains associated with the undepolymerizable microtubule protein pellet. The inactivation of the microtubule-bound enzyme is related to the concentration of microtubule protein. Higher the concentration of microtubule protein, lower the fraction of inactivated enzyme; consequently, glyceraldehyde 3-phosphate dehydrogenase is able to copolymerize quantitatively with microtubule protein through one assembly-disassembly cycle, provided that the concentration of microtubule protein is high. Monomeric glyceraldehyde 3-phosphate dehydrogenase (molecular weight: 35,000) devoid of enzyme activity, prepared by reversible dissociation of the tetrameric enzyme, also binds to microtubules and is quantitatively recovered in the undepolymerizable microtubule protein fraction after cold treatment. These results indicate that interacting with microtubules, glyceraldehyde 3-phosphate dehydrogenase partly dissociates into inactive monomers, this process is regulated by the concentration of assembled microtubule protein, and active and inactive glyceraldehyde 3-phosphate dehydrogenase bound to microtubules have different fate at the step of microtubule disassembly. These data suggest that an association of glyceraldehyde 3-phosphate dehydrogenase to microtubules could play a role in modulating the activity of the glycolytic enzyme in intact cells.  相似文献   

19.
1. Glucose 6-phosphate dehydrogenase activity (EC 1.1.1.49) of two morphological forms of Trypanosoma cruzi, epimastigotes and metacyclics, are reported. 2. The kinetic behaviour and some of the kinetic parameters of the enzyme in both forms were studied. The enzymes showed a simple Michaelis-Menten kinetic. 3. The activity in epimastigote forms was alway higher than the metacyclic ones. At subsaturating concentrations of substrate was almost 10-fold higher, whereas at saturating concentrations was about 2-fold higher. 4. In epimastigote forms the specific activity and Km values, at pH 7.5 and 37 degrees C, was found to be 142 mUnits x mg-1 of protein and 0.23 mM, respectively. 5. In the same conditions, the specific activity and Km values in metacyclic forms was 75 mUnits x mg-1 of protein and 1.06 mM, respectively. 6. A possible role in the carbohydrate metabolism of glucose 6-phosphate dehydrogenase in both forms of Trypanosoma cruzi is discussed.  相似文献   

20.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号