首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porins are trimers of beta-barrels that form channels for ions and other hydrophilic solutes in the outer membrane of Gram-negative bacteria. The X-ray structures of OmpF and PhoE show that each monomeric pore is constricted by an extracellular loop that folds into the channel vestibule, a motif that is highly conserved among bacterial porins. Electrostatic calculations have suggested that the distribution of ionizable groups at the constriction zone (or eyelet) may establish an intrinsic transverse electrostatic field across the pore, that is perpendicular to the pore axis. In order to study the role that electrostatic interactions between pore residues may have in porin function, we used spontaneous mutants and engineered site-directed mutants that have an altered charge distribution at the eyelet and compared their electrophysiological behavior with that of wild-type OmpC. We found that some mutations lead to changes in the spontaneous gating activity of OmpC porin channels. Changes in the concentration of permeant ions also altered this activity. These results suggest that the ionic interactions that exist between charged residues at the constriction zone of porin may play a role in the transitions between the channel's closed and open states.  相似文献   

2.
BACKGROUND: Porins provide diffusion channels for salts and small organic molecules in the outer membrane of bacteria. In OmpF from Escherichia coli and related porins, an electrostatic field across the channel and a potential, originating from a surplus of negative charges, create moderate cation selectivity. Here, we investigate the strongly anion-selective porin Omp32 from Comamonas acidovorans, which is closely homologous to the porins of pathogenic Bordetella and Neisseria species. RESULTS: The crystal structure of Omp32 was determined to a resolution of 2.1 A using single isomorphous replacement with anomalous scattering (SIRAS). The porin consists of a 16-stranded beta barrel with eight external loops and seven periplasmic turns. Loops 3 and 8, together with a protrusion located within beta-strand 2, narrow the cross-section of the pore considerably. Arginine residues create a charge filter in the constriction zone and a positive surface potential at the external and periplasmic faces. One sulfate ion was bound to Arg38 in the channel constriction zone. A peptide of 5.8 kDa appeared bound to Omp32 in a 1:1 stoichiometry on the periplasmic side close to the symmetry axis of the trimer. Eight amino acids of this peptide could be identified, revealing specific interactions with beta-strand 1 of the porin. CONCLUSIONS: The Omp32 structure explains the strong anion selectivity of this porin. Selectivity is conferred by a positive potential, which is not attenuated by negative charges inside the channel, and by an extremely narrow constriction zone. Moreover, Omp32 represents the anchor molecule for a peptide which is homologous to proteins that link the outer membrane to the cell wall peptidoglycan.  相似文献   

3.
The role of charges near the pore mouth has been discussed in theoretical work about ion channels. To introduce new negative charges in a channel protein, amino groups of porin from Rhodobacter capsulatus 37b4 were succinylated with succinic anhydride, and the precise extent and sites of succinylations and structures of the succinylporins determined by mass spectrometry and X-ray crystallography. Molecular weight and peptide mapping analyses using matrix-assisted laser desorption-ionization mass spectrometry identified selective succinylation of three lysine-epsilon-amino groups (Lys-46, Lys-298, Lys-300) and the N-terminal alpha-amino group. The structure of a tetra-succinylated porin (TS-porin) was determined to 2.4 A and was generally found unchanged in comparison to native porin to form a trimeric complex. All succinylated amino groups found in a mono/di-succinylated porin (MS-porin) and a TS-porin are localized at the inner channel surface and are solvent-accessible: Lys-46 is located at the channel constriction site, whereas Lys-298, Lys-300, and the N-terminus are all near the periplasmic entrance of the channel. The Lys-46 residue at the central constriction loop was modeled as succinyl-lysine from the electron density data and shown to bend toward the periplasmic pore mouth. The electrical properties of the MS-and TS-porins were determined by reconstitution into black lipid membranes, and showed a negative charge effect on ion transport and an increased cation selectivity through the porin channel. The properties of a typical general diffusion porin changed to those of a channel that contains point charges near the pore mouth. The single-channel conductance was no longer a linear function of the bulk aqueous salt concentration. The substantially higher cation selectivity of the succinylated porins compared with the native protein is consistent with the increase of negatively charged groups introduced. These results show tertiary structure-selective modification of charged residues as an efficient approach in the structure-function evaluation of ion channels, and X-ray crystallography and mass spectrometry as complementary analytical tools for defining precisely the chemically modified structures.  相似文献   

4.
Cadaverine induces closing of E. coli porins.   总被引:4,自引:1,他引:3       下载免费PDF全文
We have used the electrophysiological technique of patch-clamp to study the modulation of Escherichia coli porins by cadaverine. Porin channels typically have a very high probability to be open, and were not known to be inhibited by specific compounds until the present study. Experiments performed on patches of outer membrane reconstituted in liposomes reveal that cadaverine applied to the periplasmic side increases the frequency of channel closures in a concentration-dependent fashion, and thereby decreases the total amount of ion flux through a porin-containing membrane. The positive charge on cadaverine is important for inhibition, because the effect is relieved at higher pH where fewer polyamine molecules are charged. Modulation is observed only at negative pipet voltages, and therefore confers voltage dependence to porin activity. Cadaverine increases the number and duration of cooperative closures of more than one channel, suggesting that it does not merely block the pore but exerts its kinetic effect allosterically. As a biological assay of porin inhibition, E. coli behavior in chemotaxis swarm plates was tested and found to be impaired in the presence of cadaverine. Polyamines are naturally found associated with the outer membrane of E.coli, but are lost upon fractionation. We postulate that cadaverine might be a natural regulator of porin activity.  相似文献   

5.
Donnan potential (interior negative) across the outer membrane of Escherichia coli was measured by the distribution of [14C]choline in a mutant with a deletion through the genes for the active transport of choline. Calculation showed that the presence of membrane-derived oligosaccharides in the periplasm could quantitatively explain the magnitude of the Donnan potential and the periplasmic volume. By measuring the permeability of porin channels in intact cells suspended in solutions of widely different ionic strengths, it was shown that changing Donnan potential from 5 mV to approximately 100 mV had no effect on the permeability of either OmpF or OmpC porin channel toward a zwitterionic compound, cephaloridine. Thus, the "voltage-dependent gating" of porin channel, previously reported from another laboratory, is likely to be an artifact of in vitro reconstitution. The influx of negatively charged compounds, however, was affected by the Donnan potential as expected from the electrolyte diffusion theory.  相似文献   

6.
Porin mutants with new channel properties.   总被引:3,自引:0,他引:3       下载免费PDF全文
The general diffusion porin from Rhodopseudomonas blastica was produced in large amounts in Escherichia coli inclusion bodies and (re)natured to the exact native structure. Here, we report on 13 mutants at the pore eyelet giving rise to new diffusion properties as measured in planar lipid bilayer experiments. The crystal structures of seven of these mutants were established. The effects of charge-modifying mutations at the pore eyelet are consistent with the known selectivity for cations. Deletions of 16 and 27 residues of the constriction loop L3 resulted in labile trimers and pores. The reduction of the eyelet cross section by introducing tryptophans gave rise to a closely correlated decrease of the conductivities. A mutant with six newly introduced tryptophans in the eyelet closed its pore in a defined manner within seconds under a voltage of 20 mV, suggesting the existence of two states. The results indicate that the pore can be engineered in a rational manner.  相似文献   

7.
FomA porin is the major outer-membrane protein of Fusobacterium nucleatum. It exhibits the functional properties of a general diffusion porin, but has no sequence similarity to other porins. According to the proposed topology model, each monomer of this trimeric protein is a beta-barrel consisting of 16 transmembrane segments with eight surface-exposed loops. Several conserved charged residues are proposed to extend from the beta-barrel wall into the aqueous channel lumen, and may contribute to a transverse electric field similar to that at the pore constriction of porins with known structure. The goal of our study was to identify particular basic residues contributing to such an electric field in FomA. Several arginines and lysines were replaced by negatively charged glutamates or uncharged alanines. The mutated FomA porins were expressed in Escherichia coli, and the effects on pore function were studied in vivo, by assaying the uptake rate of beta-lactam antibiotics, and in vitro after reconstitution of the purified proteins in lipid bilayer membranes. Some of the point mutations had a significant impact on the channel properties. The substitution R92A produced a 130% increased permeability of the zwitterionic beta-lactam cephaloridine, and the cation selectivity of R92E increased by 70%. The effects of the R90E substitution on channel properties were similar. Most of the point mutations had a minor effect on the voltage gating of the FomA channel, resulting in an increased sensitivity, except for K78E, which showed a decreased sensitivity. The latter mutation had no effect on cation selectivity, but the K78A substitution improved the uptake rate of cephaloridine. The results presented here indicate that arginines 90 and 92 are probably part of the constriction zone of the FomA porin, and lysine 78 and arginines 115 and 117 are probably in close proximity to this region as well.  相似文献   

8.
《Biophysical journal》2020,118(11):2844-2852
We report that the dynamics of antibiotic capture and transport across a voltage-biased OmpF nanopore is dominated by the electroosmotic flow rather than the electrophoretic force. By reconstituting an OmpF porin in an artificial lipid bilayer and applying an electric field across it, we are able to elucidate the permeation of molecules and their mechanism of transport. This field gives rise to an electrophoretic force acting directly on a charged substrate but also indirectly via coupling to all other mobile ions, causing an electroosmotic flow. The directionality and magnitude of this flow depends on the selectivity of the channel. Modifying the charge state of three different substrates (norfloxacin, ciprofloxacin, and enoxacin) by varying the pH between 6 and 9 while the charge and selectivity of OmpF is conserved allows us to work under conditions in which electroosmotic flow and electrophoretic forces add or oppose. This configuration allows us to identify and distinguish the contributions of the electroosmotic flow and the electrophoretic force on translocation. Statistical analysis of the resolvable dwell times reveals rich kinetic details regarding the direction and the stochastic movement of antibiotics inside the nanopore. We quantitatively describe the electroosmotic velocity component experienced by the substrates and their diffusion coefficients inside the porin with an estimate of the energy barrier experienced by the molecules caused by the interaction with the channel wall, which slows down the permeation by several orders of magnitude.  相似文献   

9.
Two major outer membrane proteins of Enterobacter cloacae 206 were purified and identified as porins by using reconstituted vesicles. The 37-kilodalton porin forms a channel with a radius of 0.6 nm, which prefers positively charged substances to negatively charged ones, whereas the 39- to 40-kilodalton porin forms a larger channel with a radius of 0.8 nm, which has weaker selectivity for electric charges.  相似文献   

10.
The membrane electrochemical potential is critical for the export of most periplasmic proteins in Escherichia coli. Its exact role during insertion of integral inner membrane proteins, however, remains obscure. Using derivatives of the inner membrane protein leader peptidase (Lep), we now show that the membrane potential appears to stimulate the membrane translocation of chain segments containing negatively charged residues, that positively charged regions appear to be more easily translocated in the absence of a potential, and that certain Lep constructs insert with different topologies in the presence and absence of a membrane potential, suggesting that the electrochemical potential introduces an asymmetry between the topological effects of positively and negatively charged amino acids during the process of membrane protein insertion in E. coli.  相似文献   

11.
Purified porin OmpF from Escherichia coli outer membrane was chemically modified by acetylation and succinylation of amino groups and by amidation of the carboxyl groups. Native and chemically modified porins were incorporated into lipid bilayer membranes and the permeability properties of the pores were studied. Acetylation and succinylation of the porin trimers had almost no influence on the single channel conductance in the presence of small cations and anions and the cation selectivity remained essentially unchanged as compared with the native porin. Amidation had also only little influence on the single channel conductance and changed the pore conductance at maximum by less than 50%, whereas the cation selectivity of the porin is completely lost after amidation. The results suggest that the structure of the porin pore remains essentially unchanged after chemical modification of the pores and that their cation selectivity is caused by an excess of negatively charged groups inside the pore and/or on the surface of the protein. Furthermore, it seems very unlikely that the pore contains any positively charged group at neutral pH.  相似文献   

12.
Enterobacter aerogenes develops increased multidrug resistance via a functional alteration of outer-membrane permeability associated with a decrease in porin function. We have sequenced the gene coding the major porin of Enterobacter aerogenes, omp36. The sequence shows a high similarity with the Klebsiella pneumoniae ompK36 gene and is closely related to the enterobacterial OmpC family. Sequence analysis of several Omp36 issued from clinical strains indicated variability in putative cell-surface exposed domains. Interestingly, substitution Gly112Asp was observed in the conserved eyelet L3 region of the porin produced by two strains, C and 3. This substitution is associated with a high general beta-lactam resistance observed in these isolates and with alteration of pore properties previously described in strain 3 porin [Mol. Microbiol. 41 (2001) 189]. This is the first genetic identification of impermeability-mediated resistance to beta-lactams in various clinical E. aerogenes strains.  相似文献   

13.
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels.  相似文献   

14.
Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.  相似文献   

15.
E F Eppens  N Nouwen    J Tommassen 《The EMBO journal》1997,16(14):4295-4301
The transport of bacterial outer membrane proteins to their destination might be either a one-step process via the contact zones between the inner and outer membrane or a two-step process, implicating a periplasmic intermediate that inserts into the membrane. Furthermore, folding might precede insertion or vice versa. To address these questions, we have made use of the known 3D-structure of the trimeric porin PhoE of Escherichia coli to engineer intramolecular disulfide bridges into this protein at positions that are not exposed to the periplasm once the protein is correctly assembled. The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm. This proves that the protein passes through the periplasm on its way to the outer membrane. Furthermore, since the disulfide bonds create elements of tertiary structure within the mutant proteins, it appears that these proteins are at least partially folded before they insert into the outer membrane.  相似文献   

16.
Chen M  Xie K  Yuan J  Yi L  Facey SJ  Pradel N  Wu LF  Kuhn A  Dalbey RE 《Biochemistry》2005,44(31):10741-10749
The M13 phage Procoat protein is one of the best characterized substrates for the novel YidC pathway. It inserts into the membrane independent of the SecYEG complex but requires the 60 kDa YidC protein. Mutant Procoat proteins with alterations in the periplasmic region had been found to require SecYEG and YidC. In this report, we show that the membrane insertion of these mutants also strongly depends on SecDF that bridges SecYEG to YidC. In a cold-sensitive mutant of YidC, the Sec-dependent function of YidC is strongly impaired. We find that specifically the SecDF-dependent mutants are inhibited in the cold-sensitive YidC strain. Finally, we find that subtle changes in the periplasmic loop such as the number and location of negatively charged residues and the length of the periplasmic loop can make the Procoat strictly Sec-dependent. In addition, we successfully converted Sec-independent Pf3 coat into a Sec-dependent protein by changing the location of a negatively charged residue in the periplasmic tail. Protease mapping of Pf3 coat shows that the insertion-arrested proteins that accumulate in the YidC- or in the SecDF-deficient strains are not translocated. Taken together, the data suggest that the Sec-dependent mutants insert at the interface of YidC and the translocon with SecDF assisting in the translocation step in vivo.  相似文献   

17.
We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.  相似文献   

18.
Ionic currents and cytoplasmic voltage gradients have been observed in a variety of polarizing cells and developing tissues. In certain cases, it has been determined that these endogenous electric fields can segregate intracellular charged molecules by electrophoresis; in other cases, the endogenous fields are suspected to have such an influence. Separate theoretical suggestions have been made that extracellular electric currents, whether from a biological or a nonbiological source, should be able to electrophorese intracellular molecules after being conducted through cell membranes into the interior of long single cells [L.F. Jaffe and R. Nuccitelli (1977) Annu. Rev. Biophys. Bioeng. 6, 445-476] or extended ensembles of cells coupled electrotonically by gap junctions [M.S. Cooper (1984) J. Theor. Biol. 111, 123-130]. To test whether external electric fields could redistribute intracellular molecules within a tissue coupled by gap junctions, and to quantitatively measure in situ the electrophoretic mobility of a charged intracellular molecule, we injected 6-carboxyfluorescein into the electrotonically coupled lateral giant neurons of the crayfish abdominal nerve cord. When a dc electric field (0.2-3.4 V/cm) was subsequently applied along the length of the cord, the negatively charged fluorescent dye was observed to migrate through both the cytoplasms and the gap junctions of the lateral giant neurons, toward the anode, at a rate directly proportional to the applied electric field strength (electrophoretic mobility = -0.92 +/- 0.27 micron/sec per V/cm). These results suggest that electric fields of a sufficient magnitude, whether of an exogenous or an endogenous origin, can repattern the distribution of charged molecules within the cytoplasm of an extended ensemble of coupled cells. In addition, these results suggest that externally applied electric fields might be used in studies of pattern formation to repattern the intercellular distribution of charged molecules that are permeant to gap junctions within electrically coupled tissues.  相似文献   

19.
The effects of pH on the integral conductance and on the properties of single channels induced by porin from rat liver mitochondria in a lipid bilayer have been studied. When the membrane potential increases, the conductance of the multi-channel membrane decreases more sharply at acidic pH than at neutral or basic pH. The channel is shown to have several states with different conductance and selectivity. The number of levels and their conductance do not depend on pH, while the selectivity as well as the dependence of steady-state probabilities of different levels on the membrane potential are substantially affected by a pH change. This dependence curve steepens in the pH region where charges of carboxyl groups of aspartic and glutamic amino acids are neutralized. It is concluded that at neutral pH the channel gate is controlled by a great number of the positively and negatively charged groups. The high steepness of the conductance-voltage curve in the acidic region suggests that at least 60 positive charges participate in controlling the channel gate. This number, compared with that of the positively charged side chain amino acids per channel, according to the amino acid analysis of the porin, led us to conclude that almost all amino groups of the channel former must pass through the entire membrane potential difference upon random motion of the channel among the states. The assumption that channel closing leads to redistribution of the electric field within the pore, changing the energy of the charges on the voltage sensor, may be the only explanation of this phenomenon.  相似文献   

20.
Recently we have shown that maltoporin channels reconstituted into black lipid membranes have pronounced asymmetric properties in both ion conduction and sugar binding. This asymmetry revealed also that maltoporin insertion is directional. However, the orientation in the lipid bilayer remained an open question. To elucidate the orientation, we performed point mutations at each side of the channel and analyzed the ion current fluctuation caused by an asymmetric maltohexaose addition. In a second series we used a chemically modified maltohexaose sugar molecule with inhibited entry possibility from the periplasmic side. In contrast to the natural outer cell wall of bacteria, we found that the maltoporin inserts in artificial lipid bilayer in such a way that the long extracellular loops are exposed to the same side of the membrane than protein addition. Based on this orientation, the directional properties of sugar binding were correlated to physiological conditions. We found that nature has optimized maltoporin channels by lowering the activation barriers at each extremity of the pore to trap sugar molecules from the external medium and eject them most efficiently to the periplasmic side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号