共查询到20条相似文献,搜索用时 0 毫秒
1.
R. B. Khesin S. Z. Mindlin Zh. M. Gorlenko T. S. Ilyina 《Molecular & general genetics : MGG》1968,103(2):194-208
Summary A streptomycin method has been used for the isolation of mutants with RNA synthesis inhibited at elevated temperature. The method is based on the observation that streptomycin kills bacteria with normal RNA synthesis and does not affect the cells with inhibited synthesis of RNA. This selection method increases the yield of temperature sensitive mutants by a factor 10–20, the amount of mutants with disturbed RNA synthesis is increased 3–5 fold as compared with the method of replicas.Several types of mutants were found among the temperature sensitive strains: those possessing temperature sensitivity of one, two or three types of cellular macromolecules DNA, RNA and protein. The screening among the mutants with affected RNA synthesis revealed a strain ts-19 showing low RNA polymerase activity in cell extracts and partially purified RNA polymerase preparations. The presented evidence suggests that ts-19 mutation affects the structural gene of one of the RNA polymerase subunits.The mapping of the corresponding locus indicated that it was located between the str and thy loci in E. coli K 12 chromosome at a distance of about 20 recombination units from the first locus. 相似文献
2.
3.
RNA synthesis was followed during amino acid starvation of strains of Escherichia coli that contained both the relaxed (relA) mutation and a mutation affecting ribosome assembly that results in oversynthesis of RNA. The ribosome mutation did not by itself lead to relaxedness. The relaxed mutation could be expressed in organisms that contained the ribosome mutation. 相似文献
4.
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented. 相似文献
5.
6.
Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae 总被引:7,自引:0,他引:7
M D Mendenhall P Leeds H Fen L Mathison M Zwick C Sleiziz M R Culbertson 《Journal of molecular biology》1987,194(1):41-58
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed. 相似文献
7.
Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae. 总被引:11,自引:17,他引:11
下载免费PDF全文

The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance. 相似文献
8.
Temperature sensitive nop2 alleles
defective in synthesis of 25S rRNA and large ribosomal subunits
in Saccharomyces cerevisiae
下载免费PDF全文

Bo Hong Ke Wu J.
Scott Brockenbrough Pei Wu John
P. Aris 《Nucleic acids research》2001,29(14):2927-2937
Using molecular genetic techniques, we have generated and characterized six temperature sensitive (ts) alleles of nop2. All failed to support growth at 37°C and one was also formamide sensitive (fs) and failed to grow on media containing 3% formamide. Conditional lethality is not due to rapid turnover of mutant Nop2p proteins at 37°C. Each allele contains between seven and 14 amino acid substitutions and one possesses a nonsense mutation near the C-terminus. Mapping experiments with one allele, nop2-4, revealed that a subset of the amino acid substitutions conferred the ts phenotype and that these mutations have an additive effect. All six mutants exhibited dramatic reductions in levels of 60S ribosome subunits under non-permissive conditions as well as some reduction at permissive temperature. Processing of 27S pre-rRNA to mature 25S rRNA was defective in all six mutants grown under non-permissive conditions. Levels of the 40S ribosomal subunit and 18S rRNA were not significantly affected. Amino acid substitutions in nop2 conditional alleles are discussed in the context of the hypothesis that Nop2p functions both as an RNA methyltransferase and a trans-acting factor in rRNA processing and large ribosomal subunit biogenesis. 相似文献
9.
10.
M.N. Tenan C.H. Ortiz G.M. Dellamora-Ortiz J.R. Mattoon A.D. Panek 《FEMS microbiology letters》1985,26(2):217-220
Abstract Independently discovered mutations which alter cyclic-AMP dependent protein kinase activity in Saccharomyces cerevisiae are analysed in relation to trehalose and glycogen storage. The defective trehalose and glycogen accumulation in strains which bear the glc1 mutation results from abnormal activation of trehalase by a protein kinase which has partially lost its cAMP dependence. Cells bearing the bcy1 mutation produce an altered protein kinase due to extremely low levels of the cAMP-binding protein. This altered kinase activates trehalase, resulting in low trehalose contents in these cells. In cell-free extracts of control strains (S288C and 7Q-2D), which produce normal levels of glycogen and trehalose, the enzyme trehalase is mainly found in an inactive, cryptic form. Each of the haploid strains containing one of the mutant genes (glc1, glc4-1 and bcy1) is defective in both trehalose and glycogen accumulation and exhibits low activation ratios of trehalase by protein kinase. Genetic complementation experiments clearly establish that the bcy1 mutation involves a different gene to that altered by the glc1 mutation, since the resulting diploid behaved normally. Strain AM9-10D, previously classified as wild-type (normal for bcy1 ), is defective in the accumulation of trehalose and glycogen and exhibits almost all trehalose in the active form. 相似文献
11.
12.
13.
F Juan Vidales F Sanchez-Madrid J P Ballesta 《Biochemical and biophysical research communications》1981,98(3):717-726
In ribosomes two proteins, L44 and L45, of strong acidic character are detected. These proteins, presumably equivalent to bacterial L7 and L12, have been purified and have given a total cross reaction when tested by double immunodiffusion. Reaction with fluorescamine has shown that the amino terminal group of the polypeptide is blocked in protein L44 and free in protein L45. Tryptic analysis of the two proteins shows that three out of nine peptides are in identical position in both patterns, three more are easily related and the last three are clearly different. The data indicate that proteins L44 and L45 are closely related but not totally identical. 相似文献
14.
15.
16.
17.
Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae 总被引:32,自引:5,他引:32
下载免费PDF全文

A total of 37 recessive mutations showing enhanced resistance to the glucose repression of galactokinase synthesis have been isolated by a selection procedure with a GAL81 gal7 double mutant. These mutations were grouped into three different complementation classes. One class, reg1, contains mutants arising from mutations at a site close to, but complementing, the gal3 locus. The reg1 mutant also showed resistance to the glucose repression of invertase synthesis but not to that of alpha-D-glucosidase. The two other classes were identified as arising from recessive mutations at the GAL82 locus and the GAL83 locus, respectively, at which various dominant mutations were isolated previously. When in a constitutive background due to the GAL81 or gal80 mutation, the GAL82 and GAL83 mutations did not show a mutually additive effect on the resistance to glucose repression of galactokinase synthesis, while the reg1 and GAL82 (or GAL83) mutations did. Based upon the specific behavior of cells with various genotypes for the above genes in response to the concentration of galactose and glucose in the medium, we propose a model involving three independent circuits for glucose signals in the regulation of the structural genes for the galactose pathway enzymes. 相似文献
18.
Ribosomal RNA synthesis in Saccharomyces cerevisiae 总被引:67,自引:0,他引:67
19.
Lipid synthesis in inositol-starved Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Lipid synthesis was analyzed in an inositol-requiring mutant of Saccharomyces cerevisiae (MC13). Both rates and cellular amounts of [U-14C]acetate incorporation into phospholipids, triacylglycerols, free sterols and steryl esters were elevated in an inositol-starved culture compared to the supplemented control at a time when the deprived culture was losing viability (inositol-less death). The rates at a later time were greatly reduced. During the period when de novo lipid synthesis was high in the starved culture, phospholipid turnover and presumed conversion to triacylglycerols was also accelerated; no differences were apparent in the turnover of the sterol fractions between the two cultures. No change in the fractional percent of ergosterol or of the sterol precursors could be attributed to inositol starvation. The synthesis and maintenance of membrane lipids (phospholipids and free sterols) and their coupling in cellular metabolism are discussed in light of these results. 相似文献
20.
Summary Diploid strains of Saccharomyces cerevisiae, each homozygous for one of the temperature sensitive mutations rna2, rna4, rna6 or rna8, are temperature sensitive for ribosome synthesis during vegetative growth, but are not inhibited for ribosomal synthesis at the restrictive temperature under sporulation conditions. The continued ribosome biosynthesis at the restrictive temperature (34° C) during sporulation includes de novo synthesis of both ribosomal RNA and ribosomal proteins. This lack of inhibition of ribosome biosynthesis is found even when cells committed to complete sporulation are returned to vegetative growth medium. The ribosomes synthesized at 34° C are apparently functional, as they are found in polyribosomes. Although the rna mutants do not regulate ribosome synthesis during sporulation, all of these diploid strains fail to complete sporulation at 34° C. The cells are arrested after the second meiotic nuclear division but before ascus formation. The failure to complete sporulation at the restrictive temperature and the inhibition of ribosome biosynthesis during growth are caused by the same mutation, because revertants selected for temperature independent growth were also able to sporulate at 34° C. 相似文献