首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

2.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

3.
The heterotrimeric G proteins, G(12) and G(13), mediate signaling between G protein-coupled receptors and the monomeric GTPase, RhoA. One pathway for this modulation is direct stimulation by Galpha(13) of p115 RhoGEF, an exchange factor for RhoA. The GTPase activity of both Galpha(12) and Galpha(13) is increased by the N terminus of p115 Rho guanine nucleotide exchange factor (GEF). This region has weak homology to the RGS box sequence of the classic regulators of G protein signaling (RGS), which act as GTPase-activating proteins (GAP) for G(i) and G(q). Here, the RGS region of p115 RhoGEF is shown to be distinctly different in that sequences flanking the predicted "RGS box" region are required for both stable expression and GAP activity. Deletions in the N terminus of the protein eliminate GAP activity but retain substantial binding to Galpha(13) and activation of RhoA exchange activity by Galpha(13). In contrast, GTRAP48, a homolog of p115 RhoGEF, bound to Galpha(13) but was not stimulated by the alpha subunit and had very poor GAP activity. Besides binding to the N-terminal RGS region, Galpha(13) also bound to a truncated protein consisting only of the Dbl homology (DH) and pleckstrin homology (PH) domains. However, Galpha(13) did not stimulate the exchange activity of this truncated protein. A chimeric protein, which contained the RGS region of GTRAP48 in place of the endogenous N terminus of p115 RhoGEF, was activated by Galpha(13). These results suggest a mechanism for activation of the nucleotide exchange activity of p115 RhoGEF that involves direct and coordinate interaction of Galpha(13) to both its RGS and DH domains.  相似文献   

4.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

5.
Regulators of G protein signaling (RGS proteins) modulate Galpha-directed signals because of the GTPase activating protein (GAP) activity of their conserved RGS domain. RGS14 and RGS12 are unique among RGS proteins in that they also regulate Galpha(i) signals because of the guanine nucleotide dissociation inhibitor (GDI) activity of a GoLoco motif near their carboxy-termini. Little is known about cellular regulation of RGS proteins, although several are phosphorylated in response to G-protein directed signals. Here we show for the first time the phosphorylation of native and recombinant RGS14 in host cells. Direct stimulation of adenylyl cyclase or introduction of dibutyryl-cAMP induces phosphorylation of RGS14 in cells. This phosphorylation occurs through activation of cAMP-dependent protein kinase (PKA) since phosphate incorporation is completely blocked by a selective inhibitor of PKA but only partially or not at all blocked by inhibitors of other G-protein regulated kinases. We show that purified PKA phosphorylates two specific sites on recombinant RGS14, one of which, threonine 494 (Thr494), is immediately adjacent to the GoLoco motif. Because of this proximity, we focused on the possible effects of PKA phosphorylation on the GDI activity of RGS14. We found that mimicking phosphorylation on Thr494 enhanced the GDI activity of RGS14 toward Galpha(i) nearly 3-fold, with no associated effect on the GAP activity toward either Galpha(i) or Galpha(o). These findings implicate cAMP-induced phosphorylation as an important modulator of RGS14 function since phosphorylation could enhance RGS14 binding to Galpha(i)-GDP, thereby limiting Galpha(i) interactions with downstream effector(s) and/or enhancing Gbetagamma-dependent signals.  相似文献   

6.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

7.
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.  相似文献   

8.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

9.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

10.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

11.
RGS proteins (regulators of G protein signaling) are potent accelerators of the intrinsic GTPase activity of G protein alpha subunits (GAPs), thus controlling the response kinetics of a variety of cell signaling processes. Most RGS domains that have been studied have relatively little GTPase activating specificity especially for G proteins within the Gi subfamily. Retinal RGS9 is unique in its ability to act synergistically with a downstream effector cGMP phosphodiesterase to stimulate the GTPase activity of the alpha subunit of transducin, Galphat. Here we report another unique property of RGS9: high specificity for Galphat. The core (RGS) domain of RGS9 (RGS9) stimulates Galphat GTPase activity by 10-fold and Galphai1 GTPase activity by only 2-fold at a concentration of 10 microM. Using chimeric Galphat/Galphai1 subunits we demonstrated that the alpha-helical domain of Galphat imparts this specificity. The functional effects of RGS9 were well correlated with its affinity for activated Galpha subunits as measured by a change in fluorescence of a mutant Galphat (Chi6b) selectively labeled at Cys-210. Kd values for RGS9 complexes with Galphat and Galphai1 calculated from the direct binding and competition experiments were 185 nM and 2 microM, respectively. The gamma subunit of phosphodiesterase increases the GAP activity of RGS9. We demonstrate that this is because of the ability of Pgamma to increase the affinity of RGS9 for Galphat. A distinct, nonoverlapping pattern of RGS and Pgamma interaction with Galphat suggests a unique mechanism of effector-mediated GAP function of the RGS9.  相似文献   

12.
RGS9, a member of the family of regulators of G protein signaling (RGS), serves as a GTPase-activating protein (GAP) for the transducin alpha-subunit (Gtalpha) in the vertebrate visual transduction cascade. The GAP activity of RGS9 is uniquely potentiated by the gamma-subunit of the effector enzyme, cGMP-phosphodiesterase (Pgamma). In contrast, Pgamma attenuates the GAP effects of several other RGS proteins, including RGS16. We demonstrate here that the Pgamma subunit exerts its effects on the GTPase activity of the Gtalpha-RGS complex via the C-terminal domain, Pgamma-63-87. The structural determinants that control the direction of Pgamma effects on the RGS-Gtalpha system are localized within the RGS domains. The addition of Pgamma caused an increase in the maximal stimulation of Gtalpha GTPase activity by RGS9d without affecting the EC50 value. Modulation of Gtalpha GTPase activity by chimeric RGS16 and RGS9 proteins and Pgamma has been investigated. This analysis suggests that in addition to the differences in primary structures, the overall conformations of the RGS fold in RGS9 and RGS16 are likely to be responsible for the opposite effects of Pgamma on the RGS9 and RGS16 GAP activity. The RGS9 alpha3-alpha5 region constituted the minimal insertion of the RGS9 domain into RGS16 that reversed the inhibitory effect of Pgamma. A model of the RGS9 complex with Gtalpha shows the alpha3-alpha5 helices in RGS9 facing the proximate Pgamma binding site on Gtalpha. Our results and this model demonstrate that the mechanism of potentiation of RGS9 GAP activity by Pgamma involves a more rigid stabilization of the Gtalpha switch regions when Gtalpha is bound to both RGS9 and Pgamma.  相似文献   

13.
The bifunctional protein RGS14 is both a GTPase activating protein (GAP) for Gialpha and Goalphaand a guanine nucleotide dissociation inhibitor (GDI) for Gialpha. This GDI activity is isolated to a region of the protein distinct from the RGS domain that contains an additional G protein-binding domain (RBD/GL). Here, we report that RGS14 missing its RGS domain (R14-RBD/GL) binds directly to Go and Gi to modulate nucleotide binding and hydrolysis by mechanisms distinct from its defined GDI activity. In brain pull-down assays, full-length RGS14 and R14-RBD/GL (but not the isolated RGS domain of RGS14) bind Goalpha-GDP, Gialpha-GDP, and also Gbetagamma. When reconstituted with M2 muscarinic receptors (M2) plus either Gi or Go, RGS4 (which has no RBD/GL domain) and full-length RGS14 each markedly stimulates the steady-state GTPase activities of both G proteins, whereas R14-RBD/GL has little or no effect. R14-RBD/GL potentiates RGS4 GAP activity in membrane-based assays by increasing the apparent affinity of RGS4 for Gialpha and Goalpha, suggesting a cooperative interaction between the RBD/GL domain, RGS4, and Galpha. This activity of R14-RBD/GL on RGS4 is not apparent in single-turnover solution GAP assays with purified Gialpha or Goalpha, suggesting that membranes and/or receptors are required for this activity. When these findings are taken together, they indicate that regions of RGS14 outside of the RGS domain can bind inactive forms of Go and Gi to confer previously unappreciated activities that influence Galphanucleotide binding and/or hydrolysis by mechanisms distinct from its RGS domain and established GDI activity.  相似文献   

14.
Members of the regulators of G protein signaling (RGS) family modulate Galpha-directed signals as a result of the GTPase-activating protein (GAP) activity of their conserved RGS domain. In addition to its RGS domain, RGS14 contains a Rap binding domain (RBD) and a GoLoco motif. To define the cellular and biochemical properties of RGS14 we utilized two different affinity purified antisera that specifically recognize recombinant and native RGS14. In brain, we observed two RGS14-like immunoreactive bands of distinct size (60 kDa and 55 kDa). Both forms are present in brain cytosol and in two, biochemically distinct, membrane subpopulations: one detergent-extractable and the other detergent-insensitive. Recombinant RGS14 binds specifically to activated Galphai/o, but not Galphaq/11, Galpha12/13, or Galphas in brain membranes. In reconstitution studies, we found that RGS14 is a non-selective GAP for Galphai1 and Galphao and that full-length RGS14 is an approximately 10-fold more potent stimulator of Galpha GTPase activity than the RGS domain alone. In contrast, neither full-length RGS14 nor the isolated RBD domain is a GAP for Rap1. RGS14 is also a highly selective guanine nucleotide dissociation inhibitor (GDI) for Galphai but not Galphao, and this activity is restricted to the C-terminus containing the GoLoco domain. These findings highlight previously unknown biochemical properties of RGS14 in brain, and provide one of the first examples of an RGS protein that is a bifunctional regulator of Galpha actions.  相似文献   

15.
Phospholipase C-beta, the principal effector protein regulated by Galphaq, has been shown to increase the agonist-stimulated, steady-state GTPase activity of Gq in proteoliposomes that contain both heterotrimeric Gq and m1 muscarinic receptor. We now use a moderately stable complex of R183C Galphaq bound to GTP to show that PLC-beta1 acts directly as a GTPase-activating protein (GAP) for isolated Galphaq in a membrane-free system. PLC-beta1 accelerated the hydrolysis of GalphaqR183C.GTP up to 20-fold. The Km was 1.5 nM, which is similar both to the EC50 with which R183C and wild type Galphaq activate PLC-beta1 and to the EC50 with which PLC-beta1 acts as a Gq GAP in the vesicle-based assay. The Galphaq GAP activity of RGS4 can also be quantitated by this assay; it accelerated hydrolysis of bound GTP about 100-fold. The Gq GAP activities of both PLC-beta1 and RGS4 are blocked by Gbeta gamma subunits, probably by a competitive mechanism. These data suggest either that the Gbeta gamma subunits are not continuously required for receptor-catalyzed GDP/GTP exchange during steady-state GTP hydrolysis or that GAPs, either PLC-beta or RGS proteins, can substitute for Gbeta gamma in this set of reactions.  相似文献   

16.
A subfamily of regulators of G protein signaling (RGS) proteins consisting of RGS6, -7, -9, and -11 is characterized by the presence of a unique Ggamma-like domain through which they form obligatory dimers with the G protein subunit Gbeta5 in vivo. In Caenorhabditis elegans, orthologs of Gbeta5.RGS dimers are implicated in regulating both Galphai and Galphaq signaling, and in cell-based assays these dimers regulate Galphai/o- and Galphaq/11-mediated pathways. However, initial studies with purified Gbeta5.RGS6 or Gbeta5.RGS7 showed that they only serve as GTPase activating proteins for Galphao. Pull-down assays and co-immunoprecipitation with these dimers failed to detect their binding to either Galphao or Galphaq, indicating that the interaction might require additional factors present in vivo. Here, we asked if the RGS7.Gbeta5 complex binds to Galphaq using fluorescence resonance energy transfer (FRET) in transiently transfected mammalian cells. RGS7, Gbeta5, and Galpha subunits were tagged with yellow variants of green fluorescent protein. First we confirmed the functional activity of the fusion proteins by co-immunoprecipitation and also their effect on signaling. Second, we again demonstrate the interaction between RGS7 and Gbeta5 using FRET. Finally, using both FRET spectroscopy on cell suspensions and microscopy of individual cells, we showed FRET between the yellow fluorescence protein-tagged RGS7.Gbeta5 complex and cyan fluorescence protein-tagged Galphaq, indicating a direct interaction between these molecules.  相似文献   

17.
Agonist-stimulated high affinity GTPase activity of fusion proteins between the alpha(2A)-adrenoreceptor and the alpha subunits of forms of the G proteins G(i1), G(i2), G(i3), and G(o1), modified to render them insensitive to the action of pertussis toxin, was measured following transient expression in COS-7 cells. Addition of a recombinant regulator of G protein signaling protein, RGS4, did not significantly affect basal GTPase activity nor agonist stimulation of the fusion proteins containing Galpha(i1) and Galpha(i3) but markedly enhanced agonist-stimulation of the proteins containing Galpha(i2) and Galpha(o1.) The effect of RGS4 on the alpha(2A)-adrenoreceptor-Galpha(o1) fusion protein was concentration-dependent with EC(50) of 30 +/- 3 nm and the potency of the receptor agonist UK14304 was reduced 3-fold by 100 nm RGS4. Equivalent reconstitution with Asn(88)-Ser RGS4 failed to enhance agonist function on the alpha(2A)-adrenoreceptor-Galpha(o1) or alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins. Enzyme kinetic analysis of the GTPase activity of the alpha(2A)-adrenoreceptor-Galpha(o1) and alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins demonstrated that RGS4 both substantially increased GTPase V(max) and significantly increased K(m) of the fusion proteins for GTP. The increase in K(m) for GTP was dependent upon RGS4 amount and is consistent with previously proposed mechanisms of RGS function. Agonist-stimulated GTPase turnover number in the presence of 100 nm RGS4 was substantially higher for alpha(2A)-adrenoreceptor-Galpha(o1) than for alpha(2A)-adrenoreceptor-Galpha(i2). These studies demonstrate that although RGS4 has been described as a generic stimulator of the GTPase activity of G(i)-family G proteins, selectivity of this interaction and quantitative variation in its function can be monitored in the presence of receptor activation of the G proteins.  相似文献   

18.
RGS proteins (regulators of G protein signaling) attenuate heterotrimeric G protein signaling by functioning as both GTPase-activating proteins (GAPs) and inhibitors of G protein/effector interaction. RGS2 has been shown to regulate Galpha(q)-mediated inositol lipid signaling. Although purified RGS2 blocks PLC-beta activation by the nonhydrolyzable GTP analog guanosine 5'-O-thiophosphate (GTPgammaS), its capacity to regulate inositol lipid signaling under conditions where GTPase-promoted hydrolysis of GTP is operative has not been fully explored. Utilizing the turkey erythrocyte membrane model of inositol lipid signaling, we investigated regulation by RGS2 of both GTP and GTPgammaS-stimulated Galpha(11) signaling. Different inhibitory potencies of RGS2 were observed under conditions assessing its activity as a GAP versus as an effector antagonist; i.e. RGS2 was a 10-20-fold more potent inhibitor of aluminum fluoride and GTP-stimulated PLC-betat activity than of GTPgammaS-promoted PLC-betat activity. We also examined whether RGS2 was regulated by downstream components of the inositol lipid signaling pathway. RGS2 was phosphorylated by PKC in vitro to a stoichiometry of approximately unity by both a mixture of PKC isozymes and individual calcium and phospholipid-dependent PKC isoforms. Moreover, RGS2 was phosphorylated in intact COS7 cells in response to PKC activation by 4beta-phorbol 12beta-myristate 13alpha-acetate and, to a lesser extent, by the P2Y(2) receptor agonist UTP. In vitro phosphorylation of RGS2 by PKC decreased its capacity to attenuate both GTP and GTPgammaS-stimulated PLC-betat activation, with the extent of attenuation correlating with the level of RGS2 phosphorylation. A phosphorylation-dependent inhibition of RGS2 GAP activity was also observed in proteoliposomes reconstituted with purified P2Y(1) receptor and Galpha(q)betagamma. These results identify for the first time a phosphorylation-induced change in the activity of an RGS protein and suggest a mechanism for potentiation of inositol lipid signaling by PKC.  相似文献   

19.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号