首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mountain lakes in the Bohemian Forest, on both the Czech and German sides, were atmospherically acidified mainly in the 1960s–1980s and have since been recovering from acidification. In 2007, we performed the first complete study on littoral macroinvertebrates in all eight lakes. The goals of the study were to 1) compare macroinvertebrates in the lakes during the process of recovery and 2) investigate relations between the occurrence of taxa and water chemistry. Lake water pH varied from 4.6 to 5.7, concentrations of dissolved reactive Al and labile Al ranged from 118–601 and 11–470 μg L?1, respectively, and DOC concentrations were < 6 mg L?1. Altogether 73 taxa were identified from all lakes; a positive relationship was found between pH and the number of macroinvertebrate taxa. The highest number of taxa was found in the least acidic lakes Laka and Grosser Arbersee, including the mollusk Pisidium casertanum. In contrast, the lowest diversity was found in the most acidified ?ertovo jezero. Cluster analyses of macroinvertebrates and water chemistry suggested pH as the key factor influencing the occurrence of macroinvertebrate taxa. An interesting finding was the occurrence of the boreo-montane water beetle Nebrioporus assimilis in Prá?ilské record of this species in the Czech Republic since 1960.  相似文献   

2.
Wim Vyverman 《Hydrobiologia》1996,336(1-3):107-120
The present knowledge of the freshwater algal flora in the Indo-Malaysian North Australian region is reviewed. More than 4700 taxa have been recorded from this region. Desmids, diatoms and cyanobacteria are among the better studied groups of organisms, while phytoflagellates have received very little attention. Phytoplankton communities in tropical lakes are generally similar to summer communities of temperate lakes. In addition, there is a large number of typical tropical taxa, including pantropical and regional endemic elements. Local endemism occurs in the old Tertiary lakes of the region. The composition of algal communities changes markedly along an altitudinal gradient, and tropical taxa are gradually replaced by taxa characteristic for cool climatic conditions. Biogeographical distribution patterns are exemplified for the desmids and diatoms. Among the more than 2680 desmids recorded from the Indo-Malaysian North Australian region, about 800 have never been found elsewhere. Dispersal by migratory birds and past climatic changes might explain distribution patterns. Because of incomplete taxonomy and a general lack of understanding of the autoecology, distribution and speciation of freshwater algae, however, there remain serious obstacles for detailed biogeographical analyses.  相似文献   

3.
Relationships between taxonomic composition of shallow epilithic algal communities and nine environmental variables in 32 lakes of different trophic states in Ireland were explored using gradient analysis. A canonical correspondence analysis using four representative environmental variables, alkalinity (correlated with pH and conductivity), maximum phytoplankton chl a (CHLmax) (correlated with total P, total N, and chl), turbidity, and water color explained 21% of the variance in taxa distributions. The first two axes were significant and accounted for 77% of the variance in the periphyton–environmental relationship. The first axis was strongly related to alkalinity and color, which reflected geology and land use in the watersheds. The second axis was most correlated with CHLmax, and separation of lakes corresponded to their Organization for Economic Cooperation and Development (OECD) trophic classification based on water chemistry. Eutrophic lakes were characterized by cyanobacteria taxa and Stigeoclonium sp. Diatoms and desmids were generally more abundant in oligotrophic and mesotrophic lakes. Values for diatom trophic indices were poor indicators of trophic state. Weighted averaging regression and calibration techniques were used to develop transfer functions between 84 taxa and total P, total N, and CHLmax. The total P inference model predicted OECD trophic classification correctly for 84% of the lakes. Values for taxa preferences resulting from such models can provide the foundation for biomonitoring schemes using extant periphyton communities. The turnover time of periphyton taxa should integrate changes in environmental conditions at a temporal scale intermediate to surface‐sediment fossil diatom assemblages and water column variables, which may be more appropriate for detecting annual changes.  相似文献   

4.
Limnological gradients of small, oligotrophic, and low conductance lakes in northern New England were defined by principal components analysis; relationships of sedimented diatom species to the gradients were investigated by correlation analysis. Diatom distributions were most strongly related to the gradient of pH and alkalinity and the covarying variables, conductance, Mg, Ca, total Al, and exchangeable Al. Weaker relationships to lake morphology, dissolved organic carbon and water color, altitude and marine aerosol inputs, and the distinctive water chemistry of some New Hampshire lakes were also present. Results for 16 taxa of importance in our studies of lake acidity are given in detail and are compared to results from other regions of eastern North America. Planktonic taxa were absent below pH 5.5, with the exception of the long form of Asterionella ralfsii var. americana Korn. The two forms of this taxon differed ecologically: the long form (>45μm) had an abundance weighted mean (AWM) pH 4.90 and occurred mostly in lakes that were deep relative to transparency; the short form (<45μm)had an AWM pH and occurred on lakes that were shallow relative to transparency. The ecological advantage of a “splitter” approach to diatom taxonomy was demonstrated by examination of other taxa as well, including Tabellaria flocculosa (Roth) Kütz. These results have important implications for paleolimnological interpretations.  相似文献   

5.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

6.
7.
The effect of fluctuations in water level on phytoplankton development (abundance, biomass, size structure, taxonomic composition, species diversity and rate of community compositional change) in three vegetated lakes of the Paraná River floodplain (27° 27′?S; 58° 55′?W) were studied. Between September 1995 and June 1996 there were two inputs of lotic water. Ordering of physical and chemical parameters (Principal Component Analysis) allowed the differentiation of two phases: I) without lotic influence (limnophase) and II) with lotic influence (potamophase). Two-hundred fifty-eight algal taxa were identified, of which Euglenophyceae showed the highest number of taxa (65% of total). Small Chlorophyceae and Cryptophyceae (C-strategists) predominated in density in both periods. During potamophase, the input of nutrients from a flood event produced an increase in algal biomass and a shift in phytoplankton composition from a Chlorophyceae (C-strategists), to a Cyanophyceae and Euglenophyceae (S-strategists), dominated comunity. Bacillariophyceae, Chrysophyceae, Dinophyceae and Xanthophyceae were best represented during limnophase. All phytoplankton attributes showed significant differences between phases (limnophase vs potamophase) but not among lakes. These results support the hypothesis that hydrology (floods) clearly exerts an overall impact on the phytoplankton community composition in lakes of the Paraná River floodplain. Hydrology effects the lake water chemistry, conditioned by the isolation time prior to a flood, the horizontal dragging and exchange of algae during floods, and the water residence time and aquatic vegetation coverage.  相似文献   

8.
The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska   总被引:5,自引:5,他引:0  
Water samples from 45 lakes and 8 rivers in arctic Alaska were analyzed for major anions, cations, nutrients, chlorophyll, zooplankton, and benthos. The waters were dilute (conductivities of 30 to 843 μS cm−1), and their composition varied from Na-Ca-Cl waters near the Arctic Ocean to Ca-Mg-HCO3 waters further inland. Sea salt input in precipitation was important in determining the chemistry of coastal lakes, partly because of low groundwater flow and less time for water to react with shallow unfrozen soils. Further inland, variations in water chemistry among sites were related mainly to differences in bedrock, the age of associated glacial drift, and the input of wind blown sediment. Variations in zooplankton species composition among the lakes were related more to latitude, lake morphometery, and biotic interactions than to water chemistry. The presence of fish as predators mostly determined the overall size structure of the zooplankton community. The chironomid taxa identified have been previously reported from the Neararctic, except for Corynocera oliveri which is a new record. The abundance of the widely distributed chironomid Procladius appears to be controlled by sculpin predation.  相似文献   

9.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

10.
The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P < 0.05) in diatom community composition between CF and IPP lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.  相似文献   

11.
Cyanobacteria and eukaryotic algae are important primary producers in a variety of environments, yet their distribution and response to environmental change in saline lakes are poorly understood. In this study, the community structure of cyanobacteria and eukaryotic algae in the water and surface sediments of six lakes and one river on the Qinghai–Tibetan Plateau were investigated with the 23S rRNA gene pyrosequencing approach. Our results showed that salinity was the major factor controlling the algal community composition in these aquatic water bodies and the community structures of water and surface sediment samples grouped according to salinity. In subsaline–mesosaline lakes (salinity: 0.5–50 g L?1), Cyanobacteria (Cyanobium, Synechococcus) were highly abundant, while in hypersaline lakes (salinity: >50 g L?1) eukaryotic algae including Chlorophyta (Chlorella, Dunaliella), Bacillariophyta (Fistulifera), Streptophyta (Chara), and Dinophyceae (Kryptoperidinium foliaceum) were the major members of the community. The relative abundance ratio of cyanobacteria to eukaryotic algae was significantly correlated with salinity. The algae detected in Qinghai–Tibetan lakes exhibited a broader salinity range than previously known, which may be a result of a gradual adaptation to the slow evolution of these lakes. In addition, the algal community structure was similar between water and surface sediment of the same lake, suggesting that sediment algal community was derived from water column.  相似文献   

12.
  1. Rivers often transport phytoplankton to coastal embayments and introduce nutrients that can enrich coastal plankton communities. We investigated the effects of the Nottawasaga River on the nearshore (i.e. within 500 μm of shore) phytoplankton composition along a 10-km transect of Nottawasaga Bay, Lake Huron in 2015 and 2016. Imaging flow cytometry was used to identify and enumerate algal taxa, which were resolved at sizes larger than small nanoplankton (i.e. >5 μm). Multivariate analysis (perMANOVA and redundancy analysis) and a dilution model were used to examine how nutrients and the transport of algal taxa affected community composition in the bay.
  2. Sampling stations with different percentages of river water had significantly different phytoplankton communities. Phytoplankton community composition was also strongly associated with nutrients, including total phosphorus, which also varied with the percentage of river water. The majority of the 51 phytoplankton taxa identified in 2016 had numerical abundances in the bay that could be explained simply by the dilution of incoming river water.
  3. Phytoplankton transported from the river had a higher proportion of edible-sized cells (<30 μm), particularly in summer when colonial cyanobacteria were numerically dominant in the bay. Six taxa were more abundant than expected from the dilution of river water and included some cyanobacteria with late summer maxima. Five of the taxa that were transported from the river were less abundant than expected in the bay.
  4. Whereas impacts of fertilisation due to the characteristically higher nutrient concentration in the river are to be expected, the strong and highly correlated effects of transport within the narrow coastal band of this study largely concealed any distinct fertilisation effects.
  5. Riverine inputs may strongly influence the nearshore assemblage of phytoplankton in oligotrophic embayments in large lakes, creating hotspots for productivity, species turnover, and trophic dynamics.
  相似文献   

13.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

14.
We investigated chironomid fauna of surface sediments and a short sediment core (Bol’shoy Kharbey Lake) from Pechora river basin, Northern Russia. Twenty three investigated lakes have thermokarst, glacial or floodplain origin and are characterised by low mineralization, mostly hydrocarbon-calcium type of water and low concentration of nutrients. Most of the lakes have circumneutral pH around ≤7 and only two lakes are slightly more acidic with pH ≤ 6. Ninety six chironomid taxa were identified in the surface sediments. Distribution of chironomids in the studied region is driven by continentality, mean TJuly and рН. Chironomid communities from the core of the B. Kharbei Lake demonstrate the highest similarity with the fauna of the deeper lakes of the glacial origin. The glacial lakes have the highest indices of continentality and the lowest winter temperatures within the investigated data set. The chironomid fauna of the glacial lakes is composed of the profundal, oligotrophic and cold-stenotherm taxa. The fauna of the floodplain and thermokarst lakes is more closely related to TJuly and is composed of littoral and phytophilic taxa of meso–or eutrophic waters and moderate temperature conditions. The fauna of the acidic thermokarst lakes considerably differs from the other lakes. Chironomid communities here are represented by tolerant to acidification taxa, and by the typically littoral and shallow water acid-tolerant taxa that apparently also can tolerate acidification. Studied sediment record covers ca last 200 years. The reconstructed TJuly during the entire period remain slightly below the modern temperatures. From 1970 reconstructed TJuly shows steady increase to the modern level. The reconstructed water depths (WDs) of the lake are higher than today till 1980. The highest WDs are reconstructed for ca 1970. After that the WDs gradually decrease to the modern level. Changes of the WDs are most probably related to changes in the precipitation rate.  相似文献   

15.
1. The tiny non‐motile autotrophic picoplankton (APP; size range 0.2–2 μm) occur in all types of aquatic habitats and are comprised of prokaryotic as well as eukaryotic taxa. In the Boreal Zone, the majority of lakes have high concentrations of coloured humic substances that can adversely affect lake light climate and cause steep summertime stratification resulting in epilimnetic nutrient depletion. APP are more effective in nutrient and light acquisition than larger phytoplankton and thus should be competitive in humic lakes. 2. Most lacustrine APP studies have been based on short sampling periods, and thus, interannual variation and its drivers are still unclear. We studied APP in the small, boreal, humic Lake Valkea‐Kotinen during five open‐water periods in 2002–06 to determine interannual variation and the importance of meteorological drivers for APP dynamics. 3. Total APP showed a bimodal annual pattern, but the timing and vertical location of the two maxima varied during the study. In general, APP thrived in warm water and the most important abiotic factor controlling APP was stability of the water column (Ns). On average, 82% of APP were found in the epilimnion or metalimnion during summertime stratification. 4. There was niche separation of APP and larger phytoplankton in the lake because, with only one exception, APP maxima occurred separately from the maxima of larger phytoplankton. 5. Two groups, solitary eukaryotic APP and colonial picocyanobacteria (Merismopedia warmingiana), responded differently to the abiotic factors. Solitary APP preferred high water colour and low pH, both of which occurred after heavy rain, whereas colonial APP did not fare well when water colour was high. Our findings suggest that when future climate change‐related processes increase incoming allocthonous organic matter load from the catchment, solitary eukaryotic APP will be favoured.  相似文献   

16.
Tap waters from Barcelona and several other locations in N.E. Spain were analyzed to determine the algal occurrence and to assess their probable origin and fate. In general, a low number of taxa (2–9) occurred per sample, while cell density was highly variable (from 20 to more than 1000 cells ml-1). Green algae were usually the most abundant, most of the taxa being common in natural phytoplankton assemblages from mesotrophic or eutrophic waters. The proportion of planktonic to benthic taxa differed between samples, there being only one sample (Lérida) with a predominant planktonic composition. Analysis of treated water revealed that algae were not completely removed at the end of the treatment, meaning that a low number could reach the distribution network. Moreover, other organisms (flagellates) had their origin in storage water tanks. No seasonal pattern of occurrence was apparent since there were many occasional taxa, implying a lack of direct connection between natural populations and tap water algae. It is therefore suggested that algae can reach the distribution network by several possible origins. Algae were sometimes viable; culture experiments showed occasional growth in June, but not in August samples.  相似文献   

17.
Pienitz  Reinhard  Smol  John P. 《Hydrobiologia》1993,269(1):391-404
The relationship between diatom (Bacillariophyceae) taxa preserved in surface lake sediments and measured limnological and environmental variables in 22 lakes near Yellowknife (N.W.T.) was explored using multivariate statistical methods. The study sites are distributed along a latitudinal gradient that includes a strong vegetational gradient of boreal forests in the south to arctic tundra conditions in the north. Canonical correspondence analysis (CCA) revealed that lakewater concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) each accounted for independent and statistically significant proportions of variation in the distribution of diatom taxa. Weighted-averaging (WA) models were developed to infer DIC and DOC from the relative abundances of the 76 most common diatom taxa. These models can now be used to infer past DIC and DOC concentrations from diatom assemblages preserved in sediment cores of lakes in the Yellowknife area, which may provide quantitative estimates of changes in lakewater chemistry related to past vegetational shifts at treeline.  相似文献   

18.
The impact of hydrology (floods, seepage) on the chemistry of water and sediment in floodplain lakes was studied by a multivariate analysis (PCA) of physico-chemical parameters in 100 lakes within the floodplains in the lower reaches of the rivers Rhine and Meuse. In addition, seasonal fluctuations in water chemistry and chlorophyll-a development in the main channel of the Lower Rhine and five floodplain lakes along a flooding gradient were monitored. The species composition of the summer phytoplankton in these lakes was studied as well.At present very high levels of chloride, sodium, sulphate, phosphate and nitrate are found in the main channels of the rivers Rhine and Meuse, resulting from industrial, agricultural and domestic sewage. Together with the actual concentrations of major ions and nutrients in the main channel, the annual flood duration determines the physico-chemistry of the floodplain lakes. The river water influences the water chemistry of these lakes not only via inundations, but also via seepage. A comparison of recent and historical chemical data shows an increase over the years in the levels of chloride both in the main channel of the Lower Rhine and in seepage lakes along this river. Levels of alkalinity in floodplain lakes showed an inverse relationship with annual flood duration, because sulphur retention and alkalinization occurred in seepage waters and rarely-flooded lakes. The input of large quantities of nutrients (N, P) from the main channel has resulted, especially in frequently flooded lakes, in an increase in algal biomass and a shift in phytoplankton composition from a diatom dominated community towards a community dominated by chlorophytes and cyanobacteria.  相似文献   

19.
We sampled zooplankton communities from 54 small water bodies distributed throughout Wisconsin to evaluate whether a snap-shot of zooplankton community structure during early spring could be used for the purpose of differentiating lakes from wetlands. We collected a single set of zooplankton and water chemistry data during a one-month time window (synchronized from south to north across the state) from an open water site in each basin as a means to minimize and standardize sampling effort and to minimize cascading effects arising from predator–prey interactions with resident and immigrant aquatic insect communities. We identified 53 taxa of zooplankton from 54 sites sampled across Wisconsin. There was an average of 6.83 taxa per site. The zooplankton species were distributed with a great deal of independence. We did not detect significant correlations between number of taxa and geographic region or waterbody size. There was a significant inverse correlation between number of taxa and the concentration of calcium ion, alkalinity and conductivity. One pair of taxa, Lynceus brachyurus and Chaoborus americanus, showed a significant difference in average duration of sites of their respective occurrence. All other pairs of taxa had no significant difference in average latitude, waterbody surface area, total phosphorus, total Kjeldahl nitrogen, alkalinity, conductivity, calcium ion, sulfate, nitrate, silicate or chloride. Taxa were distributed at random among the sites – there were no statistically significant pairs of taxa occurring together or avoiding each other. Multivariate analysis of zooplankton associations showed no evidence of distinct associations that could be used to distinguish lakes from wetlands. Zooplankton community structure appears to be a poor tool for distinguishing between lakes and wetlands, especially at the relatively large scale of Wisconsin (dimension of about 500 km). The data suggest that a small body of water in Wisconsin could be classified as a wetland if it persists in the spring and summer for only about 4 months, and if it is inhabited by Lynceus brachyurus, Eubranchipus bundyi, and if Chaoborus americanus and Chydorus brevilabris are absent.  相似文献   

20.
Spring phytoplankton of 54 small lakes in southern Finland   总被引:4,自引:4,他引:0  
Lauri Arvola 《Hydrobiologia》1986,137(2):125-134
The abundance and species composition of phytoplankton communities were studied rapidly following the spring ice-melt in 54 small Finnish lakes that form a unique mosaic of water bodies. Phytoplankton biomass and cell density varied among the study lakes with a factor 100 between the lowest and highest values. Highest biomass and densities of phytoplankton characterized small ( < 0.05 km2) lakes with moderate or high water colour (> 80 mg Pt l–1). In contrast, biomass was low in clear-water lakes and lakes where water throughflow was strong. Typically one species dominated most phytoplankton communities, and usually comprised up to about 45% of the total phytoplankton biomass. Two-thirds of the 103 taxa observed were Chrysophyceans and Chlorophyceans. The most common taxa wereChlamydomonas spp. (Chlorophyceae) andCryptomonas ovata (Cryptophyceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号