首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We studied the influence of anthropogenic drivers on the distribution and regeneration of tree species in vegetation at different stages of succession from grasslands to oak forests in mid-montane Central Himalaya. We found fire, grazing, and lopping as the main factors hindering a progressive successional regime towards a late-successional oak community. Succession was studied in five vegetation formations (grasslands, pine, pine–oak, open oak, and dense oak), with similar site conditions, representing a theoretical successional sequence from early- to late-successional stages. A structured survey with uniform distribution of sampling plots in the five selected vegetation formations was conducted to gather information abut the vegetation communities. Early-successional grasslands and pine forests were found to harbour high densities of pine and oak seedling and sapling regeneration. However, recurring fires and chronic unsustainable levels of grazing in these vegetation formations obstructed progressive succession by eliminating regenerating seedling and saplings from the forest understorey. Similarly, in intermediate- and late-successional stages (including pine–oak, open oak, and dense oak), overexploitation of existing oaks trees via lopping and grazing of regenerating oak seedlings and saplings hampered oak regeneration and development. The possibility to convert pine forests into oak as well as the conservation of existing oak forests through controlled grazing and lopping are management options that can contribute to an enhanced functioning of forest ecosystems in the study area. We conclude that with strategic management that restricts the current anthropogenic disturbances, the extent of oak forest in the study area can be increased.  相似文献   

2.
王芳芳  徐欢  李婷  伍星 《应用生态学报》2019,30(10):3277-3284
放牧是人类管理利用草地生态系统的最主要途径之一.食草动物的采食、践踏、卧息和排泄物归还等干扰不仅会改变草地地上植物群落,也会对土壤养分循环产生显著的影响.随着人类活动的加剧,放牧强度和频率也在逐渐增加,从而对草地土壤氮素循环关键过程产生重要影响.放牧主要通过改变土壤的物理性质、土壤氮库以及微生物的组成和结构,进而影响氮素在土壤中的迁移与转化.适度放牧会促进土壤氮素的矿化过程和硝化过程,加快氮素的周转,有利于植物吸收可利用氮素,而对于反硝化的影响与草地的水热条件和土壤类型等密切相关.目前,关于放牧强度对土壤氮素循环关键过程影响的研究结果不一致,其影响机制尚不明晰,尤其对于不同类型的草原仍存在较大的差异.本研究在大量查阅国内外已有研究结果的基础上,论述了放牧对土壤氮素循环关键过程的影响效应,总结了放牧对土壤氮素循环的影响机制,指出了目前研究过程中存在的不足,并对未来研究中值得重点关注和深入研究的科学问题进行了探讨与展望,为进一步理解放牧对草地土壤氮素循环的影响提供参考.  相似文献   

3.
Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands.  相似文献   

4.
Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta‐analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta‐analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate‐biosphere feedbacks.  相似文献   

5.
放牧对草地生态系统影响的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
全球草地占据30%左右的陆地面积, 在全球气候变化、碳氮及养分循环、保持水土、调节畜牧业生产等方面具有重要的作用。目前草地的主要利用方式之一就是放牧, 不同的牲畜种类、放牧强度、年限、历史和制度等, 会影响草地植物群落、生物多样性及土壤微生物, 进而影响草地生态系统结构、功能和过程。该文围绕放牧对草地生态系统结构、功能和过程的影响, 1)回顾了20世纪50年代到现在各个历史阶段放牧对草地生态系统影响的研究; 2)利用文献计量分析的方法, 剖析了放牧对草地影响研究的热点内容、重要区域和关键词等; 3)阐明了放牧对草地植物生长、群落特征、碳氮及养分循环、生产力及土壤质量等的各方面影响的研究进展及国内相关研究的优势及存在的主要问题和不足; 4)基于上述分析, 从草地放牧精准管理、经典假说验证、放牧和全球变化研究相结合等方面, 提出未来研究的前沿方向和优先领域。该文在系统总结放牧对草地生态系统影响的研究进展、研究优势及存在问题的基础上, 提出未来的研究应与全球变化相结合, 为我国的草地放牧生态学研究、适应性管理和可持续利用等提供科学基础。  相似文献   

6.
《植物生态学报》1958,44(5):553
全球草地占据30%左右的陆地面积, 在全球气候变化、碳氮及养分循环、保持水土、调节畜牧业生产等方面具有重要的作用。目前草地的主要利用方式之一就是放牧, 不同的牲畜种类、放牧强度、年限、历史和制度等, 会影响草地植物群落、生物多样性及土壤微生物, 进而影响草地生态系统结构、功能和过程。该文围绕放牧对草地生态系统结构、功能和过程的影响, 1)回顾了20世纪50年代到现在各个历史阶段放牧对草地生态系统影响的研究; 2)利用文献计量分析的方法, 剖析了放牧对草地影响研究的热点内容、重要区域和关键词等; 3)阐明了放牧对草地植物生长、群落特征、碳氮及养分循环、生产力及土壤质量等的各方面影响的研究进展及国内相关研究的优势及存在的主要问题和不足; 4)基于上述分析, 从草地放牧精准管理、经典假说验证、放牧和全球变化研究相结合等方面, 提出未来研究的前沿方向和优先领域。该文在系统总结放牧对草地生态系统影响的研究进展、研究优势及存在问题的基础上, 提出未来的研究应与全球变化相结合, 为我国的草地放牧生态学研究、适应性管理和可持续利用等提供科学基础。  相似文献   

7.
Grazing is a traditional grassland management technique and greatly alters ecosystem nutrient cycling. The effects of grazing intensity on the nutrient dynamics of soil and plants in grassland ecosystems remain uncertain, especially among microelements. A 2‐year field grazing experiment was conducted in a typical grassland with four grazing intensities (ungrazed control, light, moderate, and heavy grazing) in Inner Mongolia, China. Nutrient concentration was assessed in soil and three dominant plant species (Stipa krylovii, Leymus chinensis, and Cleistogenes squarrosa). Assessed quantities included four macroelements (carbon (C), nitrogen (N), phosphorus (P), and magnesium (Mg)) and four microelements (copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)). Soil total C, total N, total P, available N, and available P concentrations significantly increased with grazing intensity but soil Mg, Cu, Fe, Mn, Zn concentrations had no significant response. Plant C concentration decreased but plant N, P, Mg, Cu, Fe, Mn, and Zn concentrations significantly increased with grazing intensity. In soil, macroelement dynamics (i.e., C, N, and P) exhibited higher sensitivity with grazing intensity, conversely in plants, microelements were more sensitive. This result indicates macroelements and microelements in soil and plants had asymmetric responses with grazing intensity. The slopes of nutrient linear regression in C. squarrosa were higher than that of S. krylovii and L. chinensis, indicating that C. squarrosa had higher nutrient acquisition capacity and responded more rapidly to heavy grazing. These findings indicate that short‐term heavy grazing accelerates nutrient cycling of the soil–plant system in grassland ecosystems, elucidate the multiple nutrient dynamics of soil and plants with grazing intensity, and emphasize the important function of microelements in plant adaptation in grazing management.  相似文献   

8.

Background and aims

Exotic species, nitrogen (N) deposition, and grazing are major drivers of change in grasslands. However little is known about the interactive effects of these factors on below-ground microbial communities.

Methods

We simulated realistic N deposition increases with low-level fertilization and manipulated grazing with fencing in a split-plot experiment in California’s largest serpentine grassland. We also monitored grazing intensity using camera traps and measured total available N to assess grazing and nutrient enrichment effects on microbial extracellular enzyme activity (EEA), microbial N mineralization, and respiration rates in soil.

Results

Continuous measures of grazing intensity and N availability showed that increased grazing and N were correlated with increased microbial activity and were stronger predictors than the categorical grazing and fertilization measures. Exotic cover was also generally correlated with increased microbial activity resulting from exotic-driven nutrient cycling alterations. Seasonal effects, on abiotic factors and plant phenology, were also an important factor in EEA with lower activity occurring at peak plant biomass.

Conclusions

In combination with previous studies from this serpentine grassland, our results suggest that grazing intensity and soil N availability may affect the soil microbial community indirectly via effects on exotic cover and associated changes in nutrient cycling while grazing directly impacts soil community function.  相似文献   

9.
放牧和围封通过影响植物群落结构和土壤微环境来调控草地生态系统的碳循环。该研究在内蒙古温带草原设置轻度放牧后围封、轻度放牧、重度放牧后围封、重度放牧4种样地, 通过测定干旱年(2011年)和湿润年(2012年)地上、地下凋落物产量、质量及其分解速率和土壤养分含量, 分析不同放牧强度对凋落物形成和分解的影响, 以及围栏封育对生态系统恢复的作用。结果表明: 重度放牧地上凋落物产量和分解速率均高于轻度放牧。干旱年轻度放牧样地地下凋落物产量和分解速率高于重度放牧, 湿润年相反。短期围封显著提高了凋落物产量, 轻度放牧样地围封后地上凋落物分解速率和养分循环加快, 而重度放牧样地围封后地上凋落物分解减慢。因此, 与重度放牧相比, 轻度放牧草地的恢复更适合采用围栏封育措施; 而重度放牧草地的恢复可能还需辅以必要的人工措施。降水显著促进地上、地下凋落物形成和分解。地下凋落物的生产和分解受降水年际波动影响较大, 重度放牧草地对降水变化的敏感度比轻度放牧草地高。地上凋落物分解速率与凋落物N含量显著正相关, 与土壤全N显著负相关, 与地上凋落物C:N和木质素:N相关性不大; 地下凋落物分解速率与凋落物C、C:N和纤维素含量显著负相关。该研究结果将为不同放牧强度的草地生态系统恢复和碳循环研究提供理论依据。  相似文献   

10.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   

11.
Grassland ecosystems are an important terrestrial component of the global biogeochemical silicon cycle. Although the structure and ecological functioning of grasslands are strongly influenced by fire and grazing, the role of these key ecological drivers in the production and storage of silicon represents a significant knowledge gap, particularly since they are being altered worldwide by human activities. We evaluated the effects of fire and grazing on the range and variability of plant derived biogenic silica stored in plant biomass and soils by sampling plants and soils from long-term experimental plots with known fire and grazing histories. Overall, plants and soils from grazed sites in the South African ecosystems had up to 76 and 54% greater biogenic silica totals (kg ha?1), respectively, than grazed North American sites. In North American soils, the combination of grazing and annual fire resulted in the greatest abundance of biogenic silica, whereas South African soils had the highest biogenic silica content where grazed regardless of burn frequency. These results as well as those that show greater Si concentrations in grazed South African plants indicate that South African plants and soils responded somewhat differently to fire and grazing with respect to silicon cycling, which may be linked to differences in the evolutionary history and in the grazer diversity and grazing intensity of these ecosystems. We conclude that although fire and grazing (as interactive and/or independent factors) do not affect the concentration of Si taken up by plants, they do promote increased silicon storage in aboveground biomass and soil as a result of directly affecting other site factors such as aboveground net primary productivity. Therefore, as management practices, fire and grazing have important implications for assessing global change impacts on the terrestrial biogeochemical cycling of silicon.  相似文献   

12.
Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak–grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their “life history” envelopes.  相似文献   

13.
微斑块变化是草原退化过程中的活跃成分。分析了呼伦贝尔克氏针茅草原逆行演替过程中微斑块土壤全碳、全氮和碱解氮含量的空间异质性,提出了"养分聚集效应"的概念。研究结果表明:随着群落退化演替的加剧,土壤全碳、全氮和碱解氮的含量均表现为演替前期演替后期演替中期(P0.05)。从土壤全碳、全氮和碱解氮的变异系数和变异函数综合分析来看,10 cm×10 cm微尺度上,草原退化演替过程中土壤全碳、全氮和碱解氮的空间异质性具有明显的不一致性;全碳的空间异质性表现为演替中期演替前期演替后期,全氮表现为演替后期演替前期演替中期,碱解氮表现为演替中期演替后期演替前期。草原退化过程中土壤养分在微斑块上的富积和迁移表现出尺度依赖性和变异性。  相似文献   

14.
Woody plants in water-limited ecosystems affect their environment on multiple scales: locally, natural stands can create islands of fertility for herb layer communities compared to open habitats, but afforestation has been shown to negatively affect regional water balance and productivity. Despite these contrasting observations, no coherent multiscale framework has been developed for the environmental effects of woody plants in water-limited ecosystems. To link local and regional effects of woody species in a spatially explicit model, we simultaneously measured site conditions (microclimate, nutrient availability and topsoil moisture) and conditions of regional relevance (deeper soil moisture), in forests with different canopy types (long, intermediate and short annual lifetime) and adjacent grasslands in sandy drylands. All types of forests ameliorated site conditions compared to adjacent grasslands, although natural stands did so more effectively than managed ones. At the same time, all forests desiccated deeper soil layers during the vegetation period, and the longer the canopy lifetime, the more severe the desiccation in summer and more delayed the recharge after the active period of the canopy. We conclude that the site-scale environmental amelioration brought about by woody species is bound to co-occur with the desiccation of deeper soil layers, leading to deficient ground water recharge. This means that the cost of creating islands of fertility for sensitive herb layer organisms is an inevitable negative impact on regional water balance. The canopy type or management intensity of the forests affects the magnitude but not the direction of these effects. The outlined framework of the effects of woody species should be considered for the conservation, restoration or profit-oriented use of forests as well as in forest-based carbon sequestration and soil erosion control projects in water-limited ecosystems.  相似文献   

15.
Grazing by large herbivores, in interplay with environmental productivity, is a key driver of the composition of the vegetation with important consequences on the ecosystem and, consequently, for land management. We tested the predictions of the resource availability – resource–acquisition theory by assessing the extent to which community averages of plant traits, known to be related to plant growth, competitive ability and response to grazing were correlated with resource gradients within local (200 km2) geographical ranges. Second, we assessed the applicability of the same set of plant traits to make inferences on ecological effects of grazing by sheep in alpine ecosystems in Norway, using a data set consisting of 16 sites in central Norway. We estimated grazing intensity by free-ranging sheep based on GPS telemetry, soil properties, plant species composition and species traits i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf size and plant height. Soil fertility and the interaction between soil fertility and grazing, but not grazing intensity alone, were significantly related to plant species and traits composition. Generally, average SLA showed lower correspondence with soil fertility and grazing than the other traits. Leaf size and plant height were lowest at sites with high grazing intensity and in sites with low fertility, and increased with soil fertility in little and moderately grazed sites, but declined at high fertility sites when grazing was intense. LDMC showed the opposite trend. Grazing intensity was more related to the variability in plant composition and average plant traits when environmental productivity was high. Our results therefore are indicative of a convergence of responses to grazing and nutrient limitation.  相似文献   

16.
该研究选取内蒙古荒漠草原,设计无牧区(NG)、中度放牧(MG)、重度放牧(HG)3个处理,测定分析不同放牧强度处理5年后,优势植物克氏针茅以及土壤的C、N、P营养元素的化学计量特征及其协同关系,以揭示放牧生态系统养分循环的影响机制,为区域草地的利用以及修复提供理论依据。结果表明:(1)轻度放牧下荒漠草原的物种多样性均显著高于中度和重度放牧条件(P<0.05)。(2)土壤中C、N含量以及C∶N、N∶P、C∶P,均随着放牧强度的增加呈先升高后降低的变化趋势,土壤P含量随放牧强度的增加而升高。(3)随放牧强度增加,克氏针茅地上部分C含量降低,N、P含量以及N∶P先升高后降低,C∶P则先减少后升高;克氏针茅地下部分的C、N含量以及N∶P一直呈增加的趋势,P含量先减少后升高,而C∶N、C∶P则是与P含量规律相反。(4)与地上部分各元素含量相比,克氏针茅地下部分各元素含量及其比值与土壤中各元素含量的相关性更高,说明放牧条件下荒漠草原优势植物的根系与其所处的土壤环境具有一定的协同变化能力。  相似文献   

17.
Grazing of grasslands changes soil physical and chemical properties as well as vegetation characteristics, such as vegetation cover, species composition and biomass production. In consequence, nutrient allocation and water storage in the top soil are affected. Land use and management changes alter these processes. Knowledge on the impacts of grazing management on nutrient and water fluxes is necessary because of the global importance of grasslands for carbon sequestration. Soil water in semi-arid areas is a limiting factor for matter fluxes and the intrinsic interaction between soil, vegetation and atmosphere. It is therefore desirable to understand the effects of grazing management and stocking rate on the spatial and temporal distribution of soil moisture. In the present study, we address the question how spatio-temporal soil moisture distribution on grazed and ungrazed grassland sites is affected by soil and vegetation properties. The study took place in the Xilin river catchment in Inner Mongolia (PR China). It is a semi-arid steppe environment, which is characterized by still moderate grazing compared to other regions in central Inner Mongolia. However, stocking rates have locally increased and resulted in a degradation of soils and vegetation also in the upper Xilin River basin. We used a multivariate geostatistical approach to reveal spatial dependencies between soil moisture distribution and soil or vegetation parameters. Overall, 7 soil and vegetation parameters (bulk density, sand, silt and clay content, mean weight diameter, mean carbon content of the soil, vegetation cover) and 57 soil moisture data sets were recorded on 100 gridded points on four sites subject to different grazing intensities. Increasing stocking rates accelerated the influence of soil and vegetation parameters on soil moisture. However, the correlation was rather weak, except for a site with high stocking rate where higher correlations were found. Low nugget ratios indicate spatial dependency between soil or plant parameters and soil moisture on a long-term ungrazed site. However, the effect was not found for a second ungrazed site that had been excluded from grazing for a shorter period. Furthermore the most important soil and vegetation parameters for predicting soil moisture distribution varied between different grazing intensities. Therefore, predicting soil moisture by using secondary variables requires a careful selection of the soil or vegetation parameters.  相似文献   

18.
如何通过合理的利用方式提高高寒草地管理水平,实现其可持续利用一直是草地生态学领域的研究热点。为明确不同放牧家畜组合下高寒草地植物群落关键种的演替规律及其驱动因素,基于中等放牧强度设置了不同放牧家畜组合放牧样地(牦牛单牧、藏羊单牧、牦牛藏羊1 : 2混牧、牦牛藏羊1 : 4混牧、牦牛藏羊1 : 6混牧)以及围封样地,并在连续放牧处理7年后系统分析了不同放牧家畜组合下植物群落特征与土壤理化性质变化,以期确定最优放牧组合。结果表明:(1)不同放牧家畜组合均会显著降低高寒草地植物盖度,但对其物种丰富度与多样性指数的影响并不显著。(2)牦牛藏羊1 : 2混牧下植物群落特征与禁牧处理下植物群落特征较为相似,且牦牛藏羊1 : 2混牧下的植物群落稳定性最强、组织水平最高。(3)牦牛单牧与1 : 2混牧下关键种为矮生嵩草;藏羊单牧下关键种为天山针茅;1 : 4混牧下关键种为星毛委陵菜;1 : 6混牧与围封下关键种为赖草。(4)围封能够显著降低土壤容重,藏羊单牧则会显著增加土壤容重与土壤速效氮、磷含量。(5)土壤速效氮、容重与含水量是驱动不同放牧家畜组合下植物群落关键种演替的重要理化因子。综上所述,中等放牧强度下,牦牛藏羊1 : 2混牧是青藏高原高寒草地较为理想的利用方式。此外,相较于单纯增加草地物种丰富度或多样性,建立植物群落物种之间的有效关联是提高青藏高原高寒草地管理水平的另一关键途径。  相似文献   

19.
《农业工程》2021,41(4):341-345
Plant litter is dead, above and below ground; organic material i.e. leaves barks, needles, twigs and roots. Plant litter plays a key role in nutrient cycling and community organization in grassland ecosystems. Litter can have important consequences on recruitment of plant species through modification of biological, physical, and chemical features of microenvironment. Plant litter offers a major input of organic matter to the soil which modifies soil chemistry, hence impacts nutrient cycling. At early stages of litter decomposition, a particular amount of carbon is transporting to the soil nutrient pool. In terrestrial ecosystems, plant litter regulating biogeochemical cycles, maintain soil fertility, nutrient availability, and therefore influence plant growth, diversity, composition, structure, and productivity. Litter can also impact plant above net plant productivity and below net plant productivity in grassland ecosystem. Plant litter accumulation and decomposition can impact plant species composition and community structure through temperature, light and nutrient availability. The effects of plant litter on vegetation may be negative, positive or neutral due vegetation variability, study duration, habitat, latitude, quantity and quality of litter. These diverse effects of plant litter on grassland ecosystem might be due to, management practice type, management intensity, climate type, timing, precipitation and soil nutrient pool etc. Current review attempts to describe prominent effects of plant litter on vegetation, seed germination, soil fertility, Productivity, species composition, community structure and mechanism in grassland ecosystem.  相似文献   

20.
连栽第1和第2代杉木人工林养分循环的比较   总被引:4,自引:0,他引:4  
森林生态系统的养分循环是生态系统的重要功能过程之一,直接影响着森林的生产力,很大程度上影响和制约着林地的肥力水平,而且人工林连栽地力衰退和生产力下降现象普遍存在,寻求杉木林连栽两代杉木人工林养分循环差异与连栽林分生产力下降的关系,无疑具有重要的现实意义。利用30多年连续定位的测定数据,分析了连栽第1、2代杉木人工林在物质生产养分利用有效性、生物地球化学循环、地球化学循环的差异。结果表明,杉木速生阶段,第2代林每生产1 t干物质需要的养分比第1代林多1.58-3.29 kg,干材生长阶段,第2代林每生产1t所需养分比第1代林多4.23-5.92kg;速生阶段生物地球化学循环的养分利用系数第2代林比第1代林分下降19.7%-22.8%,养分循环系数下降12.8%-15.6%,干材生长阶段养分利用系数比第1代林分下降35.3%-36.2%,养分循环系数下降23.2%-27.0%,养分周转利用的生物地球化学循环功能第2代林比第1代林差;由干材生长进入成熟阶段的生长期内,伴随水文学过程的养分地球化学循环中,第2代杉木人工林生态系统的养分积累的地球化学循环的能力下降,养分流失率是第1代林的2倍左右,养分的积累率还不到第1代林的60%,对森林地力的维持和林木生长都是不利的。从生态系统水平上定位研究,定量分析了杉木连栽两代人工林养分循环功能过程,研究成果为我国南方人工林持续经营措施的制定提供了理论指导和科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号