首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.  相似文献   

2.
Acetyl- and pseudocholinesterase activities in sympathetic ganglia of rats   总被引:7,自引:3,他引:4  
—The quantitative method of Ellman , Courtney , Andres and Featherstone (1961) was adapted to a differential assay for the determination of acetyl- and pseudocholinesterase activities of sympathetic ganglia of rats. The activities of the cholinesterases of superior cervical, stellate and thoracic chain ganglia and of the abdominal ganglionic complexes in apposition to the superior mesenteric and coeliac arteries (superior mesenteric, coeliac and cardiac ganglia) were measured. B.W.284C51 dibromide, 5 × 10?5m , and ethopropazine hydrochloride, 3·15 × 10?5m , were employed to inhibit selectively acetyl- and pseudocholinesterases, respectively. Linearity was shown to be maintained with enzyme concentrations corresponding to 0·12-0·5 mg of ganglion (wet wt.)/incubation. Under the experimental conditions of this assay, the rates of the reaction of ganglionic acetyl- and pseudocholinesterases were linear for time periods greater than those employed for calculating the rates of hydrolysis in the homogenates of sympathetic ganglia. Several experimental approaches were used to ascertain the specificity of the inhibitors and of the reaction. Of the total cholinesterase activity of sympathetic ganglia of rats, 55-63 per cent was due to acetylcholinesterase and 31-39 per cent to pseudocholinesterase. On the basis of the specific enzyme activity, superior cervical, stellate and superior mesenteric ganglia contained higher acetyl- and pseudocholinesterase activities than did thoracic chain, coeliac and cardiac (abdominal) ganglia. The specific activity of acetylcholinesterase was similar in rat and cat superior cervical ganglia and sympathetic cervical trunks while the pseudocholinesterase activity of these two tissues was somewhat lower in cats than in rats.  相似文献   

3.
By means of retrograde transport of the fluorescent marker primulin the initial part of the sympathetic innervation of the myenteric nervous plexus of the descending colon has been characterized in cats and guinea pigs. When primulin is injected into the myenteric nervous plexus, marked neurons are revealed in the caudal mesenteric ganglion, in the celiac plexus ganglia, in the sympathetic trunk ganglia. The marked nervous populations of the extramural sympathetic ganglia differ in their form, size, number of neurons and their distribution.  相似文献   

4.
By means of horseradish peroxidase administration into the wall of the sigmoid colon central part, localization, relative amount, body forms and size of the neurons, dealing with innervation of the given part of the colon have been determined. Labelled neurons are present in the colon wall, in ganglia of the caudal mesenteric artery nervous plexus, in the caudal and cranial mesenteric ganglia in the celiac plexus ganglia, in nodes and internodal branches of the lumbar part of the sympathetic trunk (the left one predominantly) and in the spinal ganglia from TXIII up to LVII. In the grey substance of the spinal cord labelled neurons are not revealed. The main part of the postganglionar sympathetic neurons, projecting their axons to the sigmoid colon, are situated in the caudal mesenteric ganglion. In the spinal ganglia the most part of the labelled neurons are to the left at the level of LII-LVI, to the right--at the level of LII-LV. The optimal time for revealing the greatest number of the labelled neurons are the 1st-3d days after administration of the enzyme. Capture of the lable takes place later in the neurons of those ganglia, which are situated more further from the place of peroxidase administration.  相似文献   

5.
The effect of sodium hydroxybutyrate on the blood flow in the aorta, carotid, mesenteric and femoral arteries were studied on cats and dogs. The circulation was assessed by the electromagnetic and resistographic methods, in the anesthetized and nonanesthetized animals. The tonic activity was recorded in the sympathetic nerves and the EEG. Sodium hydroxybutrate was shown to decrease the sympathetic activity, resulting in the increase of the regional circulation and induced the EEG synchronization. The latter effect was more pronounced in the arotid arteries. It can be assumed that sodium hydroxybutyrate affects the nervous control of the blood vessels.  相似文献   

6.

Background and Aim

A neuronal pathway participates in the development of portal hypertension: blockade of afferent sensory nerves in portal vein ligated (PVL) rats simultaneously prevents brain cardiovascular regularory nuclei activation, neuromodulator overexpression in superior mesenteric ganglia, sympathetic atrophy of mesenteric innervation and hemodynamic alterations. Here we investigated in PVL rats alterations in neuromodulators and signaling pathways leading to axonal regression or apoptosis in the superior mesenteric ganglia and tested the effects of the stimulation of neuronal proliferation/survival by using a tyrosine kinase receptor A agonist, gambogic amide.

Results

The neuronal pathway was confirmed by an increased neuronal afferent activity at the vagal nodose ganglia and the presence of semaphorin3A in sympathetic pre-ganglionic neurons at the intermediolateral nucleus of the spinal cord of PVL rats. Expression of the active form of tyrosine kinase receptor A (phosphorylated), leading to proliferation and survival signaling, showed a significant reduction in PVL comparing to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression of semaphorin 3A and its receptor neuropilin1, together with increases of cleaved caspase7, inactive poly(ADP-ribose) polymerase and Rho kinase expression. Finally, the administration of gambogic amide in PVL rats showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways together with the inhibition of apoptotic cascades and Rho kinase mediated axonal regression.

Conclusion

The adrenergic alteration and sympathetic atrophy in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to post-ganglionic sympathetic regression and apoptosis and contributing to splanchnic vasodilation.  相似文献   

7.
An accurately validated method was developed for quantitative determination of succinate dehydrogenase (EC 1.3.99.1; SDH) activity in individual sympathetic neuron perikarya by microdensitometric measurement of an SDH-nitroblue tetrazolium-derived formazan final reaction product. Optimal incubation medium and reaction conditions were determined for measurement of reaction product in cryostat sections of rat superior cervical and celiac-superior mesenteric ganglia. The Beer-Lambert laws were verified for the ganglion tissue, and microdensitometric measurements (expressed as mean cell density readings; MCDR/min-1), characteristic of the Michaelis-Menten equation, enabled the results to be used for enzyme kinetic determinations of SDH activity. Km and Vmax values were obtained following Hans linear transformation of the readings. Between the ages of 6-24 months no significant variations in Km values were recorded, indicating an unchanged structure for SDH (overall mean Km = 0.083 +/- 0.055 mM). However, in both ganglia there were significant decreases (ranging from 43-54%) in Vmax values for SDH at 24 months. The overall mean Vmax value at 6 months was 4.01 +/- 0.61 (MCDR) and at 24 months was 2.07 +/- 0.76 (MCDR). This suggests that an overall decrease in metabolic activity takes place with age in sympathetic neurons of the rat superior cervical and celiac-superior mesenteric ganglia.  相似文献   

8.
Experiments were conducted on the supeior cervical and the caudal mesenteric sympathetic ganglia of a cat; it was shown that dophamine (DA), similarly to noradrenaline (NA) and adrenaline (A), depressed the cholinergic conduction. The activity of DA in the superior sympathetic ganglion was less than that of the NA and A 2- and 3-fold, respectively, and in the caudal mesenteric ganglia DA was 50 times more active than NA by the capacity to depress the cholinergic conduction. The effects of DA and NA in the superior cervical ganglia were eliminated by dyhydroergotamine, phentholamine and haloperidol, but not by tropaphen and chlorpormazine. In the caudal mesenteric ganglia the inhibitory effect of NA was decreased by phentholamine, dihydroergotamine and chlorpromazine, but not by haloperidol. On the contrary, haloperidol and chlorpromzine decreased the depressive effect of DA on the cholinergic conduction in the caudal mesenteric ganglion, whereas phentholamine, dihydroergotamine and deseryl proved to be ineffective. It is supposed that the manifestation of the dopaminergic mechanism of inhibition of cholinergic conduction in the caudal mesenteric sympathetic ganglion could underlie the dilatation of the mesenterial and renal vessels and its hypotensive action caused by DA.  相似文献   

9.
The effects of cetamolol (AI-27,303, Betacor), atenolol, propranolol, and dexpropranolol were evaluated in 36 chloralose-urethane anesthetized cats. Blood pressure, sympathetic nerve discharge, and ganglionic activity (from the superior cervical ganglion) were recorded after the intravenous administration of 2.5, 5.0, and 10 mg/kg doses of the compounds. The results indicate that cetamolol and atenolol decreased blood pressure and discharge in the postganglionic sympathetic nerve and impaired transmission at the level of sympathetic ganglia. Propranolol and dexpropranolol given at the same doses produced a larger decrease in blood pressure, but increased the sympathetic discharge and had no effect on ganglionic spike amplitude.  相似文献   

10.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed.  相似文献   

11.
The intrinsic innervation of the kidney is described based on studies using ultrastructural, fluorescent, immunocytochemical, and autoradiographic techniques. The efferent sympathetic innervation reaches all the segments of the renal vasculature and to a much lesser extent the tubular nephron. The afferent renal nerves are localized predominantly in the pelvic region, the major vessels, and the corticomedullary connective tissue. The pathways of the renal innervation to the corresponding ganglia, as reported from observations resulting from the combination of axonal transport labeling and immunocytochemical methods, are presented. In the rat the ganglia of origin of the sympathetic efferent innervation include T13-L1 ipsilateral and contralateral paravertebral ganglia and the prevertebral superior mesenteric and celiac ganglia. The sensory afferent innervation presents a different segmental distribution of the dorsal root ganglia for the right and left kidney. For the left kidney, the corresponding ganglia extend from T8 to L2 with the greatest numbers in T12 and T13. For the right kidney, ganglia as high as T6 and as low as L2 harbor neurons innervating the kidney. Current knowledge of the anatomical bases of the function of the renal nerves is discussed.  相似文献   

12.
Studies have been made on the content of adrenalin and noradrenalin in the nervous fibers and ganglia of the sympathetic nervous system of cats and rabbits during a postnatal life. In all the structures investigated, high catecholamine content was found within the first month of life on the animals. On further development, total catecholamine content decreases. Age changes in catecholamine content of preganglionic sympathetic fibers and different sympathetic ganglia indicate an effective adrenergic regulation in early postnatal ontogenesis of cats and rabbits.  相似文献   

13.
Summary In rats, the distribution of nerve structures staining for NADPH-diaphorase, and showing immunoreactivities for nitric oxide synthase (NOS), tyrosine hydroxylase and various neuropeptides was studied in sensory ganglia (dorsal root, nodose and trigeminal ganglia), in sympathetic ganglia (superior cervical, stellate, coeliac-superior and inferior mesenteric ganglia), parasympathetic ganglia (sphenopalatine, submandibular, sublingual and otic ganglia), and in the mixed parasympathetic/ sympathetic ganglia (major pelvic ganglia). The coincidence of neuronal cell bodies with strong NOS-immunoreactivity and strong NADPH diaphorase reactivity was almost total. The relative proportions of NOS-immunoreactive nerve cell bodies were largest in parasympathetic ganglia and major pelvic ganglia followed by sensory ganglia. In sympathetic ganglia no NOS-immunoreactive neuronal cell bodies could be detected. In parasympathetic and major pelvic ganglia, there was a very significant neuronal co-localization of immunoreactivities for NOS and vasoactive intestinal polypeptide (VIP). This was almost total in major pelvic ganglia, in which NOS-/VIP-immunoreactive nerve cell bodies were separate from sympathetic (tyrosine hydroxylase-/neuropeptide Y-immunoreactive), suggesting that NOS-/VIP-immuno-reactive neurons might also be parasympathetic.  相似文献   

14.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   

15.
The origin of nitric oxide synthase-containing nerve fibers in rat celiac-superior mesenteric ganglion was examined using retrograde tracing techniques combined with the immunofluorescence method. Fluoro-Gold was injected into the celiac-superior mesenteric ganglion. Neuronal cell bodies retrogradely labeled with Fluoro-Gold in the thoracic spinal cord, the dorsal root ganglia at the thoracic level, the nodose ganglion, and the intestine from the duodenum to the proximal colon were examined for nitric oxide synthase immunoreactivity. About 60% of sympathetic preganglionic neurons in the intermediolateral nucleus projecting to the celiac-superior mesenteric ganglion were immunoreactive for nitric oxide synthase, as were approximately 27% of nodose ganglion neurons and about 65% of dorsal root ganglion neurons projecting to the cceliac-superior mesenteric ganglion. Neurons projecting to the celiac-superior mesenteric ganglion were found in the myenteric plexus of the small and large intestine. In the proximal colon, about 23% of such neurons were immunoreactive for nitric oxide synthase. However, in the small intestine, no immunoreactivity was found in these neurons.  相似文献   

16.
The goal of this study was to determine the immunohistochemical characteristics of peripheral adrenergic OBR-immunoreactive (OBR-IR) neurons innervating adipose tissue in a pig. The retrograde tracer, Fast Blue (FB), was injected into either the subcutaneous, perirenal, or mesentery fat tissue depots of three male and three female pigs each with approximately 50 kg body weight. Sections containing FB(+) neurons were stained for OBR, tyrosine hydroxylase (TH) or neuropeptide Y (NPY) using a double labeling immunofluorescence method. OBR, TH, and NPY immunoreactivities were present in the thoracic (T) and lumbar (L) ganglia of the sympathetic chain, as well as in the coeliac superior mesenteric ganglion (CSMG), inferior mesenteric ganglion (IMG), intermesenteric ganglia (adrenal-ADG, aorticorenal-ARG, and ovarian-OG or testicular-TG ganglion). These results indicate that, in addition to neuroendocrine functions, leptin may affect peripheral tissues by acting on receptors located in sympathetic ganglion neurons.  相似文献   

17.
The dissection of nerves and ganglia anatomically related to the pelvic organs revealed one inferior mesenteric ganglion, two testicular ganglia, two hypogastric nerves, two pelvic ganglia and two pelvic nerves. The histochemical demonstration of catecholamines by a glyoxylic acid fluorescence method revealed a rich sympathetic innervation in the ductus deferens, in the three segments of the prostate and in the convoluted ductuli efferentes. The testis, epididymis and all three pairs of bulbourethral glands presented fluorescent nerve fibers only around blood vessels. Removal of the inferior mesenteric and testicular ganglia, and hypogastric neurectomy with our without ligature and sectioning of testicular arteries, had no effect on the density of the nonvascular fluorescent fibers. Removal of the periprostatic tissue caused complete denervation of the prostate and marked denervation of the ductuli efferentes and ductus deferens. Small ganglia containing fluorescent nerve cell bodies were found close to the capsule of the prostate. The results indicate that short adrenergic neurons are responsible for the sympathetic innervation of the reproductive organs of the male opossum.  相似文献   

18.
19.
J A Armour  G A Klassen 《Peptides》1990,11(3):533-537
Substance P and vasoactive intestinal peptide are known to activate intrathoracic sympathetic neurons which regulate the heart. In the present series of experiments, when 1 I.U. of oxytocin in 0.1 cc of normal saline was administered into the cranial poles of stellate or the middle of middle cervical ganglia cardiac rate and force were augmented. The locations of ganglionic loci which, when injected, resulted in cardiac changes varied between animals. Twenty active sites were identified in the 12 dogs investigated. When the vehicle (0.1 cc of normal saline) was injected into these active sites minimal cardiac responses were induced in one instance. When 1 or 2 I.U. of oxytocin was administered into the superior vena cave of seven animals slight systemic hypotension occurred in two of these animals. Cardiac responses were induced when oxytocin was reinjected into active intrathoracic ganglionic sites after whole body administration of hexamethonium (10 mg/kg IV), but not after local administration of timolol into the ganglia. Thus, it appears that oxytocin can activate intrathoracic ganglionic neurons involved in efferent sympathetic cardiac regulation. That such responses persist in the presence of nicotinic blockade, but not following beta-adrenergic blockade of ganglionic neurons, indicates that oxytocin modifies beta-adrenergic and not nicotinic receptors on neurons in these ganglia.  相似文献   

20.
Estrogen modulates many features of the sympathetic nervous system, including cell numbers and ganglion synapses, and can induce uterine sympathetic nerve degeneration. However, distributions of estrogen receptors alpha and beta within sympathetic neurons have not been described, and their regulation by target tissue or estrogen levels has not been explored. We used immunofluorescence and retrograde tracing to define estrogen receptor expression in sympathetic neurons at large in pre- and paravertebral ganglia and in those projecting to the uterine horns. Estrogen receptor alpha immunoreactivity was present in 29 +/- 1%, while estrogen receptor beta was expressed by 92 +/- 1% of sympathetic neurons at large. The proportions of neurons expressing these receptors were comparable in the superior cervical and thoraco-lumbar paravertebral ganglia from T11 through L5, and in the suprarenal, celiac, and superior mesenteric prevertebral ganglia. Injections of FluoroGold into the uterine horns resulted in labeled neurons, with peak occurrences in T13, L1, and the suprarenal ganglion. Uterine-projecting neurons showed small but significantly greater incidence of estrogen receptor beta expression relative to the neuronal population at large, whereas the proportion of uterine-projecting neurons with estrogen receptor alpha-immunoreactivity was nearly threefold greater. Numbers of estrogen receptor-expressing neurons were not altered by acute estrogen administration. We conclude that the vast majority of sympathetic neurons express estrogen receptor beta immunoreactive protein, whereas a smaller, presumably overlapping subset expresses the estrogen receptor alpha. Expression of the latter apparently can be enhanced by target-mediated mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号