首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple two-dimensional thin-layer chromatography was found to be useful for the separation of sugar methylated dinucleotides in RNA. Of the 16 possible sequences of the type Nm-Np, 15 were separated and all the sequences were determined. In a mouse hepatoma, MH 134, the levels of the sugar methylation in the 18S and 28S RNA molecules were 17-18 and 11-12 per 1000 nucleotides, respectively. Thus, 18s RNA contained approximately 35 2'-O-methylated dinucleotides and 28S RNA approximately 60 2'-O-methylated dinucleotides. The pattern of distribution was also distinct between these two molecules. Two 2'-O-methylated trinucleotides were identified in the 28S RNA with the sequences Um-Gm-Up and Um-Gm-psip. A unique 2'-O-methylated tetranucleotide was present also in the 28S RNA, the sequence of which was Am-Gm-Cm-Ap. The 5'-terminal nucleotides of both 18S and 28S RNA were obtained as nucleoside 3',5'-diphosphates (pNp) in the trinucleotide fraction of the RNase T2 digest. The 5'-termimi of 18S and 28S RNA were pUp and pCp, respectively, and found to be almost homogeneous.  相似文献   

2.
The 42S RNA from Semliki Forest virus contains a polyadenylate [poly(A)] sequence that is 80 to 90 residues long and is the 3'-terminus of the virion RNA. A poly(A) sequence of the same length was found in the plus strand of the replicative forms (RFs) and replicative intermediates (RIs) isolated 2 h after infection. In addition, both RFs and RIs contained a polyuridylate [poly(U)] sequence. No poly(U) was found in virion RNA, and thus the poly(U) sequence is in minus-strand RNA. The poly(U) from RFs was on the average 60 residues long, whereas that isolated from the RIs was 80 residues long. Poly(U) sequences isolated from RFs and RIs by digestion with RNase T1 contained 5'-phosphorylated pUp and ppUp residues, indicating that the poly(U) sequence was the 5'-terminus of the minus-strand RNA. The poly(U) sequence in RFs or RIs was free to bind to poly(A)-Sepharose only after denaturation of the RNAs, indicating that the poly(U) was hydrogen bonded to the poly(A) at the 3'-terminus of the plus-strand RNA in these molecules. When treated with 0.02 mug of RNase A per ml, both RFs and RIs yielded the same distribution of the three cores, RFI, RFII, and RFIII. The minus-strand RNA of both RFI and RFIII contained a poly(U) sequence. That from RFII did not. It is known that RFI is the double-stranded form of the 42S plus-strand RNA and that RFIII is the experimetnally derived double-stranded form of 26S mRNA. The poly(A) sequences in each are most likely transcribed directly from the poly(U) at the 5'-end of the 42S minus-strand RNA. The 26S mRNA thus represents the nucleotide sequence in that one-third of the 42S plus-strand RNA that includes its 3'-terminus.  相似文献   

3.
4.
RNA extracted from cat cells contains sequences homologous to RD-114 viral RNA. The sequences are measured by molecular hybridization with a single-stranded DNA probe synthesized by the virion polymerase using the endogenous viral RNA as template. Viral-specific RNA has been detected in all cells of cat origin tested thus far, but not in cells of other animals, except for the virus-producing human rhabdomyosarcoma cell, RD-114. The extent of hybridization of the DNA probe to cellular RNA was equivalent to that obtained with viral 70S RNA indicating that an equal extent of viral specific sequences is present in all cat cells as well as in RD-114 cells. The amounts of this viral RNA reach approximately 100 copies per cell in cat cells, while virus-producing RD-114 cells contain about 1,000 copies per cell. The viral RNA is present in cat cells in two distinct sizes of about 35S and 18S, whereas in RD-114 cells virus-specific RNA is quite heterogeneous in size.  相似文献   

5.
Molecular hybridization techniques were used to examine the stability of viral message and virion precursor RNA in murine leukemia virus-infected cells treated with actinomycin D. Under the conditions used, viral RNA synthesis was inhibited, but viral protein synthesis continued, and the cells produced noninfectious particles (actinomycin D virions) lacking genomic RNA (J. G. Levin and M. J. Rosenak, Proc. Natl. Acad. Sci. U.S.A. 73:1154-1158, 1976). Analysis of total RNA in virions revealed that the amount of hybridizable viral RNA decreased steadily after the addition of actinomycin D and by 8 h was 10% of the control value. Studies on fractionated viral RNA showed that this low level of hybridization is due to residual 70S RNA in the virion population. The results indicated that viral RNA which is destined to be encapsidated into virions has a half-life of approximately 3 to 4 h. In contrast, other intracellular virus-specific RNA molecules appeared to be quite stable and persisted for a long period of time, with a half-life of at least 12 h. These observations support the idea that two independent functional pools of 35S viral RNA exist within the infected cell: one serving as message and the other as precursor to virion RNA. The existence of two viral RNA pools was further documented by the finding that 12 h after the addition of actinomycin D, when virion precursor RNA was depleted, 35S and 21S viral nRNA species could be identified in polyribosomal RNA as well as in total polyadenylated cell RNA. Surprisingly, 35S and mRNA declined more rapidly than did 21S mRNA, which appeared to be increased in amount.  相似文献   

6.
A ribonucleoprotein particle containing about 20% ribonucleic acid (RNA), and containing little if any phospholipid or glucosamine, was recovered in high yield after treatment of Schmidt-Ruppin strain of Rous sarcoma virus and B77 virus with the nonionic detergent Nonidet P-40. This structure, which probably derives from the internal ribonucleoprotein filament described in electron microscopy studies, contained 80 to 90% of the viral 60 to 70S RNA and only about 10% of the protein present in intact virions. It sedimented in glycerol density gradients at approximately 130S and had a buoyant density in sucrose of about 1.34 g/ml. Studies with (32)P-labeled virus indicated that the ribonucleoprotein particle contained approximately 30 4S RNA molecules per 10(7) daltons of high-molecular-weight viral RNA. Intact virions contained about 70 4S RNA molecules per 10(7) daltons of high-molecular-weight RNA. Electrophoretic studies in dodecyl sulfate-containing polyacrylamide gels showed that the ribonucleoprotein particle contained only 5 of the 11 polypeptides found in the virion; of these the major component was a polypeptide weighing 14,000 daltons.  相似文献   

7.
8.
9.
Polyadenylic acid on poliovirus RNA. II. poly(A) on intracellular RNAs.   总被引:40,自引:25,他引:15       下载免费PDF全文
The content, size, and mechanism of synthesis of 3'-terminal poly(A) on the various intracellular species of poliovirus RNA have been examined. All viral RNA species bound to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. At 3 h after infection, the poly(A) on virion RNA, relicative intermediate RNA, polyribosomal RNA, and total cytoplasmic 35S RNA was heterogeneous in size with an average length of 75 nucleotides. By 6 h after infection many of the intracellular RNA's had poly(A) of over 150 nucleotides in length, but the poly(A) in virion RNA did not increase in size suggesting that the amount of poly(A) which can be encapsidated is limited. At all times, the double-stranded poliovirus RNA molecules had poly(A) of 150 to 200 nucleotides. Investigation of the kinetics of poly(A) appearance in the replicative intermediate and in finished 35S molecules indicated that poly(A) is the last portion of the 35S RNA to be synthesized; no nascent poly(A) could be detected in the replicative intermediate. Although this result indicates that poliovirus RNA is synthesized 5' leads to 3' like other RNA's, it also suggests that much of the poly(A) found in the replicative intermediate is an artifact possibly arising from the binding of finished 35S RNA molecules to the replicative intermediate during extraction. The addition of poly(A) to 35S RNA molecules was not sensitive to guanidene.  相似文献   

10.
Ribonucleic acids extracted from polyribosomes of cells replicating murine sarcoma-leukemia viruses (M-MSV(MLV)) were resolved by electrophoresis on 2.5% polyacrylamide gels. Virus-specific RNA was detected by hybridization of RNA in the gel fractions with the 3H-DNA product of the viral RNA-directed DNA polymerase. The postmicrosomal supernatant and the free polyribosomes contained one peak of virus-specific RNA with a molecular weight of about 2.9 × 106 (35S). In contrast, the microsomes and the membrane-bound polyribosomes contained two peaks of virus-specific RNA in approximately equal amounts with molecular weights of 2.9 × 106 (35S) and 1.5 × 106 (approximately 20S). The high molecular weight viral RNA species might serve as polycistronic mRNA for the synthesis of large polypeptides that are cleaved to form the smaller viral proteins.  相似文献   

11.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

12.
Nondefective and transformation-defective virion subunit RNAs from two strains of Rous sarcoma virus (RSV) were translated in cell-free systems derived from Krebs IIA ascites cells, wheat germ, and L-cells. In each case the predominant viral-specific product was a polypeptide of molecular weight 76,000 that is related to the internal viral group-specific antigens, as judged by immunoprecipitation with monospecific antisera and tryptic peptide fingerprinting. No difference could be detected between the translation products of 35S RNA from nondefective and transformation-defective RSV virions, nor of 35S RNA from different strains of RSV. The 76,000-molecular-weight polypeptide synthesized in response to 35S RNA in vitro was labeled with formyl-methionine from initiator tRNA. Models for viral protein synthesis are discussed in the light of these results, and arguments positioning the group-specific antigen gene at the 5' end of the 35S RNA are presented.  相似文献   

13.
Virus-specific RNA sequences were detected in mouse cells infected with murine leukemia virus by hybridization with radioactively labeled DNA complementary to Moloney murine leukemia virus RNA. The DNA was synthesized in vitro using the endogenous virion RNA-dependent DNA polymerase and the DNA product was characterized by size and its ability to protect radioactive viral RNA. Virus-specific RNA sequences were found in two lines of leukemia virus-infected cells (JLS-V11 and SCRF 60A) and also in an uninfected line (JLS-V9). Approximately 0.3% of the cytoplasmic RNA in JLS-VII cells was virus-specific and 0.9% of SCRF 60A cell RNA was virus-specific. JLS-V9 cells contained approximately tenfold less virus-specific RNA than infected JLS-VII cells. Moloney leukemia virus DNA completely annealed to JLS-VII or SCRF 60A RNA but only partial annealing was observed with JLS-V9 RNA. This difference is ascribed to non-homologies between the RNA sequences of Moloney virus and the endogenous virus of JLS-V9 cells.Virus-specific RNA was found to exist in infected cells in three major size classes: 60–70 S RNA, 35 S RNA and 20–30 S RNA. The 60–70 S RNA was apparently primarily at the cell surface, since agents which remove material from the cell surface were effective in removing a majority of the 60–70 S RNA. The 35 S and 20–30 S RNA is relatively unaffected by these procedures. Sub-fractionation of the cytoplasm indicated that approximately 35% of the cytoplasmic virus-specific RNA in infected cells is contained in the membrane-bound material. The membrane-bound virus-specific RNA consists of some residual 60–70 S RNA and 35 S RNA, but very little 20–30 S RNA. Virus-specific messenger RNA was identified in polyribosome gradients of infected cell cytoplasm. Messenger RNA was differentiated from other virus-specific RNAs by the criterion that virus-specific messenger RNA must change in sedimentation rate following polyribosome disaggregation. Two procedures for polyribosome disaggregation were used: treatment with EDTA and in vitro incubation of polyribosomes with puromycin in conditions of high ionic strength. As identified by this criterion, the virus-specific messenger RNA appeared to be mostly 35 S RNA. No function for the 20–30 S was determined.  相似文献   

14.
Newcastle disease virus-specific [(3)H]uridine-labeled 18S RNA was resolved by polyacrylamide gel electrophoresis into several components with molecular weights from 450,000 to 840,000. The analysis of 35 and 24S virus-specific RNA also revealed several components in each sedimentational class. The conversion of 18S RNA into double-stranded form by hybridization with an excess of unlabeled virion RNA improved the resolution in polyacrylamide gels and revealed at least six distinct components. The same six classes of hybrid duplexes were revealed when (32)P-labeled 50S virion RNA was hybridized with an excess of 18S RNA. The applicability of polyacrylamide gel electrophoresis of hybrid duplexes to the analysis of viral genome structure is discussed.  相似文献   

15.
16.
Methylation of adenovirus 2 (Ad 2) late RNA was studied. RNA was double-labeled with [3H-methyl]-methionine and [14C]-uridine 15–20 h postinfection. Nuclear RNA (rRNA) and cytoplasmic RNA (mRNA) was extracted, and fractionated into polyA(+) and (?) molecules using poly(U)-Sepharose. Ad 2 specific RNA was purified by 2 cycles of hybridization to and elution from Ad 2 DNA immobilized on filters. The Ad 2 polyA(+) and (?) nRNA and mRNA fractions had the same 3H14C ratios, and were estimated to contain a minimum of 1.4 methylated nucleotides per 1000 bases. Viral RNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea at pH 7.6. All four Ad RNA fractions contained methylated constituents consistent with: (1) two classes of methylated “capped” 5′-termini with general structures m7 GpppNmpNp and m7 GpppNmpNmpNp; (2) internal base methylations; (3) minor amounts of internal ribose 2′-0-methylations. Two classes of 5′-termini have previously been reported for animal cell mRNA, but not for mRNA from a variety of viruses. Internal methylations may be unique to RNA molecules transcribed in the nucleus, since they have not been found in RNA from cytoplasmic viruses. No gross differences were observed in the DEAE-Sephadex elution profiles of the methylated constituents of the four types of Ad 2 RNA. These results suggest that the majority of methylation events occur in the nucleus, and raise the possibility that Ad 2 methylated late nRNA may differ significantly from SV40 late nRNA (Lavi, S., and Shatkin, A.J. (1975) Proc. Natl. Acad. Sci. USA 72, 2012–2016).  相似文献   

17.
An intracellular assay for viral envelope glycoprotein (env) messenger was employed to analyze the RNA from virus particles of Rous-associated virus type 2. For this assay RNA was microinjected into cells infected by the env-deficient Bryan strain of Rous sarcoma virus [RSV(-) cells]. Only when the injected RNA could be translated by the recipient cells to produce viral envelope glycoprotein was the env deficiency of the RSV(-) cells complemented, enabling them to release focus-forming virus. RNA in a 21S size fraction from the Rous-associated virus particle promoted the release of numerous focus-forming virus from RSV(-) cells, whereas the major 35S virion RNA species was inactive. The env messenger activity sedimented as a sharp peak with high specific activity. RNase T1-generated fragments of virion 35S RNA were unable to promote the release of infectious virus from RSV(-) cells. Consequently, the active molecule was most likely to be env messenger which had been encapsulated by the virus particle from the cytoplasm of infected cells. Approximately 95% of the env messenger within the virion was associated with the virion high-molecular-weight RNA complex. The temperature required to dissociate env messenger from the high-molecular-weight complex was indistinguishable from the temperature required to disrupt the complex itself. Virion high-molecular-weight RNA that was associated with env messenger sedimented slightly more rapidly than the bulk virion RNA; this was the strongest evidence that the 21S messenger had been encapsulated directly from the infected cells. These data are considered along with a related observation [concerning the prolonged expression of env messenger after injection into RSV(-) cells] to raise the possibility that virus-encapsulated env messenger can become expressed within subsequently infected cells.  相似文献   

18.
Two low-molecular-weight RNAs are associated with the 70S RNA complex of Rous sarcoma virus: a previously described 4S RNA and a newly identified 5S RNA. The 4S RNA constitutes 3 to 4% of the 70S RNA complex or the equivalent of 12 to 20 molecules per 70S RNA. It exhibits a number of structural properties characteristic of transfer RNA as revealed by two-dimensional electrophoresis of oligonucleotides obtained from a T1 ribonuclease digest of the 4S RNA species. The 5S RNA is approximately 120 nucleotides in length, constitutes 1% of the 70S RNA complex or the equivalent of 3 to 4 molecules per molecules of 70S RNA, and is identical in nucleotide composition and structure to 5S RNA from uninfected chicken embryo fibroblasts. Melting studies indicate that the 5S RNA is released from the 70S RNA complex at the same temperature required to dissociate 70S RNA into its constituent 35S subunits. In contrast, greater than 80% of the 4S RNA is released from 70S RNA prior to its conversion into subunits. The possible biological significance of these 70S-associated RNAs is discussed.  相似文献   

19.
C L Liao  M M Lai 《Journal of virology》1992,66(10):6117-6124
Mouse hepatitis virus (MHV), a coronavirus, has been shown to undergo a high frequency of RNA recombination both in tissue culture and in animal infection. So far, RNA recombination has been demonstrated only between genomic RNAs of two coinfecting viruses. To understand the mechanism of RNA recombination and to further explore the potential of RNA recombination, we studied whether recombination could occur between a replicating MHV RNA and transfected RNA fragments. We first used RNA fragments which represented the 5' end of genomic-sense sequences of MHV RNA for transfection. By using polymerase chain reaction amplification with two specific primers, we were able to detect recombinant RNAs which incorporated the transfected fragment into the 5' end of the viral RNA in the infected cells. Surprisingly, even the anti-genomic-sense RNA fragments complementary to the 5' end of MHV genomic RNA could also recombine with the MHV genomic RNAs. This observation suggests that RNA recombination can occur during both positive- and negative-strand RNA synthesis. Furthermore, the recombinant RNAs could be detected in the virion released from the infected cells even after several passages of virus in tissue culture cells, indicating that these recombinant RNAs represented functional virion RNAs. The crossover sites of these recombinants were detected throughout the transfected RNA fragments. However, when an RNA fragment with a nine-nucleotide (CUUUAUAAA) deletion immediately downstream of a pentanucleotide (UCUAA) repeat sequence in the leader RNA was transfected into MHV-infected cells, most of the recombinants between this RNA and the MHV genome contained crossover sites near this pentanucleotide repeat sequence. In contrast, when exogenous RNAs with the intact nine-nucleotide sequence were used in similar experiments, the crossover sites of recombinants in viral genomic RNA could be detected at more-downstream sites. This study demonstrated that recombination can occur between replicating MHV RNAs and RNA fragments which do not replicate, suggesting the potential of RNA recombination for genetic engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号