首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The thoracic and abdominal segments of the Drosophila embryo contain 373 neurons innervating external sensory structures and 162 neurons innervating chordotonal organs. These neurons are arranged in ventral, lateral and dorsal clusters within each segment, in a highly invariant pattern. Two fascicles are formed in each segment as the sensory axons grow ventrally towards the CNS and meet motor axons growing dorsally from the CNS. In all but the last segment, the anterior fascicle is contributed by the dorsal and lateral neurons, while the posterior one is formed by the ventral neurons. Five distinct segmental patterns are described, corresponding to (1) the prothorax, (2) the other two thoracic segments, (3) the first seven abdominal segments, (4) the eighth and (5) the ninth (and possibly the tenth) abdominal segments.The publisher regrets that two companion papers unfortunately were published out of sequence. The present paper should have preceded the paper entitled The sense organs in the Drosophila larva and their relation to the embryonic pattern of sensory neurons, which appeared in Volume 195, Number 4 of the journal (pp 222–228)  相似文献   

2.
Gustatory receptors (basiconic sensilla) on the legs of the desert locust, Schistocerca gregaria, are innervated by chemosensory afferents and by a mechanosensory afferent. We show, for the first time, that these mechanosensory afferents form an elaborate detector system with the following properties: 1) they have low threshold displacement angles that decrease with increasing stimulus frequency in the range 0.05–1 Hz, 2) they respond phasically to deflections of the receptor shaft and adapt rapidly to repetitive stimulation, 3) they encode the velocity of the stimulus in their spike frequency and have velocity thresholds lower than 1°/s, and 4) they are directionally sensitive, so that stimuli moving proximally towards the coxa elicit the greatest response.The mechanosensory afferents, but not the chemosensory afferents, make apparently monosynaptic connections with spiking local interneurones in a population with somata at the ventral midline of the metathoracic ganglion. They evoke excitatory synaptic potentials that can sum to produce spikes in the spiking local interneurones. Stimulation of the single mechanosensory afferent of a gustatory receptor can also give rise to long lasting depolarizations, or to bursts of excitatory postsynaptic potentials in the interneurones that can persist for several seconds after the afferent spikes. These interneurones are part of the local circuitry involved in the production of local movements of a leg. The mechanosensory afferents from gustatory receptors must, therefore, be considered as part of the complex array of exteroceptors that provide mechanosensory information to these local circuits for use in adjusting, or controlling locomotion.  相似文献   

3.
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.  相似文献   

4.
Summary Mutations previously known to affect early neurogenesis inDrosophila melanogaster have been found also to affect the development of the peripheral nervous system. Anti-HRP antibody staining has shown that larval epidermal sensilla of homozygous mutant embryos occur in increased numbers, which depend on the allele considered. This increase is apparently due to the development into sensory organs of cells which in the wild-type would have developed as non-sensory epidermis. Thus, neurogenic genes act whenever developing cells have to decide between neurogenic and epidermogenic fates, both in central and peripheral nervous systems. Different regions of the ectodermal germ layer are distinguished with respect to their neurogenic abilities.  相似文献   

5.
 Sequence analysis of a newly isolated Hirudo medicinalis cDNA containing an Antennapedia (Antp)-class homeobox suggests that the corresponding gene, Lox6, is an ortholog of the Drosophila Deformed (Dfd) gene. In situ hybridization of whole-mounted preparations shows that the major sites of Lox6 expression during embryogenesis are the central nervous system (CNS) and the peripheral sensory system. Lox6 mRNA can be detected in a subset of neurons in each ganglion from the subesophageal ganglion (RG2) to the most posterior ganglion, with the highest level of expression seen in RG3. Peripherally, Lox6 is expressed principally in the primordia of the sensillae and in the eyes. This pattern of expression of Lox6 suggests that one of its functions may be to contribute to the diversification of neuronal phenotypes. Received: 16 August 1997/Accepted: 20 December 1997  相似文献   

6.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

7.
Retinae of chick embryos and chicks one to six weeks after hatching were examined in ultrathin sections and in freeze-etch specimens. The development of the synaptic contacts between receptor cells and bipolar cells starts at the end of the second week of incubation with the enclosure of the dendritic prolongations, invaginating receptor terminals accompanied by the appearance of electron dense material at the synaptic contact sites. Subsequently receptor terminals become filled with synaptic vesicles which surround the synaptic lamellae that appear on the 16th day of incubation. The application of the freeze-fracture technique demonstrates that the differentiation of the synaptic membranes continues into the first week post hatching. E-fracture faces of the presynaptic membranes are characterized by crater-like structures, called synaptopores. Their number is rather small during incubation and increases after hatching. In the P-fracture faces of the dendrites, which are enclosed by the receptor terminals, small particle aggregations appear on the 16th day of incubation. These small particle clusters increase by the apposition of further particles which become arranged in lines and bring out a lattice-like aspect. This arrangement of particles in the inner part of the cell membrane is the morphological expression of the maturation process. The significance of these aggregations as a postsynaptic receptor for neurotransmitters in excitatory cells is discussed.  相似文献   

8.
1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2.Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae.  相似文献   

9.
Summary An antiserum raised against GABA was used to stain the abdominal nervous system of the locust. To interpret the results, however, it was first necessary to describe the structure of the free abdominal and terminal ganglia. This was done on the basis of ethyl-gallate staining. The free abdominal ganglia are similar in structure to the abdominal neuromeres of the metathoracic ganglia. The terminal ganglion is composed of four neuromeres (representing ganglia 8–11), but only three can be distinguished in the adult on morphological grounds. The eighth neuromere resembles the free ganglia, but the ninth lacks DCI (dorsal commissure I) and the T tracts. In the tenth, only DCII and III are recognisable of the commissures, but two more posterior ones of uncertain homology are also present. Immunocytochemistry reveals three populations of somata in each abdominal ganglion. Of these only one, the medial posterior group, is found in the thoracic ganglia. DCIV and the supra-median commissure are composed of stained neurites, DCII and V contain both unstained neurites and DCI, III and VI are unstained. With the exception of the median ventral tract, all the longitudinal tracts contain some stained axons.  相似文献   

10.
Abstract. A preparation is described for intracellular recording from the neur-opile of the sub-oesophageal ganglion (SOG) of the locust, while stimulating the labial and maxillary palps with plant material in such a way as to mimic the palpation behaviour which precedes and continues throughout feeding. Twelve neurones responding to simulated palpation were recorded from and stained in the SOG. Axons of three neurones ascended to the brain, six had descending axons and three had all of their processes confined to the suboesophageal ganglion. The major regions of arborization were in the ventrolateral and mediolateral neuropiles of the maxillary and labial neuromeres. All twelve neurones were solely mechanoresponsive. In addition to responding to palpation of one or more of the four palps, five also responded to stimulation of the labrum, one to touching each antenna, and one to mechanical stimulation of each of the six tarsi. In the context of what is known about the role of mechano-stimulation in the control of feeding, and given their particular patterns of input and arborizations, it is suggested that the neurones may be active during food selection and ingestion.  相似文献   

11.
An identified interneurone (SA3) of the suboesophageal ganglion has an axon in both circumoesophageal connectives ascending to the brain. This is a novel morphology for a cell in the auditory system of the locust. The neurone is also novel for its physiological responses to sound in that it displays side-dependent response decrement (habituation). Responses to a tone directed at one ear decrement without affecting responses from the other ear. The responses on the decremented side recover when the opposite ear is stimulated. The decrement is the result of a diminishing amplitude of the compound excitatory post-synaptic potential but no inhibition is seen. Response decrement does not occur if the stimulus frequency is varied.  相似文献   

12.
雌激素受体与神经系统疾病   总被引:2,自引:0,他引:2  
王玉霞  鲁亚平 《生物学杂志》2010,27(3):79-80,112
雌激素受体是类固醇激素受体超家族成员之一,是一种配体依赖性转录因子,具有广泛的生物学功能。雌激素受体在脑内具有广泛的分布,且与一些神经系统疾病的发生发展相关。就雌激素受体在脑内的分布及其与神经系统疾病的关系进行论述。  相似文献   

13.
Summary An electron-microscopical study of locust thoracic ganglia reveals that synapses in the neuropily are morphologically heterogeneous. In addition to the conventional dyadic type described frequently in the literature, there is a second type with a complex arrangement of presynaptic dense material and a non-dyadic postsynaptic configuration. Serial-section analysis of these synapses suggests that the presynaptic structures include irregular or curved bars, and small projections.Although the proportion of non-dyadic synapses in the neuropile as a whole is small, a substantial number have been found on the branches of an identified flight motor neurone, labelled intracellularly with metal ions in conjunction with silver intensification. Samples from the arborization of this neurone give some indications of the distribution of non-dyadic synapses on it.The results are discussed in the context of distribution of synapses on other identified locust neurones, and the functional morphology of synapses in other phyla.  相似文献   

14.
15.
Recent studies show that cell dispersal is a widespread phenomenon in the development of early vertebrate embryos. These cell movements coincide with major decisions for the spatial organization of the embryo, and they parallel genetic patterning events. For example, in the central nervous system, cell dispersal is first mainly anterior–posterior and subsequently dorsal–ventral. Thus, genes expressed in signaling centers of the embryo probably control cell movements, tightly linking cellular and genetic patterning. Cell dispersal might be important for the correct positioning of cells and tissues involved in intercellular signaling. The emergence of cell dispersal at the onset of vertebrate evolution indicates a shift from early, lineage-based cellular patterning in small embryos to late, movement-based cellular patterning of polyclones in large embryos. The conservation of the same basic body plan by invertebrate and vertebrate chordates suggests that evolution of the embryonic period preceding the phylotypic stage was by intercalary co-option of basic cell activities present in the ancestral metazoan cell.  相似文献   

16.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

17.
Nitric oxide (NO) is known as a gaseous messenger in the nervous system. It plays a role in synaptic plasticity, but also in development and regeneration of nervous systems. We have studied the function of NO and its signaling cascade via cyclic GMP in the locust embryo. Its developing nervous system is well suited for pharmacological manipulations in tissue culture. The components of this signaling pathway are localized by histochemical and immunofluorescence techniques. We have analyzed cellular mechanisms of NO action in three examples: 1. in the peripheral nervous system during antennal pioneer axon outgrowth, 2. in the enteric nervous system during migration of neurons forming the midgut nerve plexus, and 3. in the central nervous system during axonal regeneration of serotonergic neurons after axotomy. In each case, internally released NO or NO-induced cGMP synthesis act as permissive signals for the developmental process. Carbon monoxide (CO), as a second gaseous messenger, modulates enteric neuron migration antagonistic to NO.  相似文献   

18.
The data on growth and development of hind limb bones in chicken embryos under normal (standard) and altered incubation conditions are presented.  相似文献   

19.
The small bristles (microchaetes) on the thorax of adult Drosophila are evenly spaced. We have analysed the development of this pattern using the enhancer trap line A101 where bacterial lacZ is expressed in the microchaete sensory mother cells (SMCs) and their progeny. We observed that the precursor cells appear in a stereotyped pattern of rows. Within each row, however, SMCs appear neither at a time nor in a restricted sequence: new SMCs are continuously intercalated between pre-existing SMCs until the distance between consecutive SMCs does not exceed a few cell diameters. In large individuals, additional SMCs may occasionally appear after the completion of the rows, in the largest empty spaces between the preexisting SMCs. Correspondence to: K. Kimura  相似文献   

20.
We describe visual responses of seventeen physiological classes of columnar neuron from the retina, lamina and medulla of the locust (Locusta migratoria) optic lobe. Many of these neurons were anatomically identified by neurobiotin injection. Characterisation of neuronal responses was made by moving and flash stimuli, and by two system identification techniques: 1. The first-order spatiotemporal kernel was estimated from response to a spatiotemporal white-noise stimulus; 2. A set of kernels to second order was derived by the maximal-length shift register (M-sequence) technique, describing the system response to a two-channel centre-surround stimulus. Most cells have small receptive fields, usually with a centre diameter of about 1.5°, which is similar to that of a single receptor in the compound eye. Linear response components show varying spatial and temporal tuning, although lateral inhibition is generally fairly weak. Second-order nonlinearities often have a simple form consistent with a static nonlinear transformation of the input from the large monopolar cells of the lamina followed by further linear filtering.Abbreviations LMC large monopolar cell - LVF long visual fibre - RF receptive field - SMC small monopolar cell - SVF short visual fibre  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号