首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOLE (mining, organizing, and logging experiments) has been developed to meet the growing data management and target tracking needs of molecular biologists and protein crystallographers. The prototype reported here will become a Laboratory Information Management System (LIMS) to help protein scientists manage the large amounts of laboratory data being generated due to the acceleration in proteome research and will furthermore facilitate collaborations between groups based at different sites. To achieve this, MOLE is based on the data model for protein production devised at the European Bioinformatics Institute (Pajon A, et al., Proteins in press).  相似文献   

2.
IntroductionOxidative stress is crucial in diabetic pathophysiology, hence the prerequisite of ingesting naturally derived antioxidants as a remedial target. This study investigates the naturally occurring antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract.MethodsMoringa oleifera leaves were macerated (MOLE) by using 70% ethanol. Physiochemical and phytochemical examinations of MOLE was assayed using standard methods. The antioxidant activity was analyzed by DPPH (1, 1-diphenyl-2-picrylhydrazil) radical scavenging assay. In vitro antidiabetic was analyzed by pancreatic α-amylase enzyme inhibitory assay. The molecular docking was performed using AutoDock Vina v1.1.2 in PyRx 30.8.ResultsEthanolic extraction of MOLE by maceration technique, 14 % yield. Loss on drying, foreign organic matters and total ash value of OLE showed 0.27 w/w, 0.8 % and 19 %, respectively. Phytochemical test on MOLE confirmed starch, carbohydrate, flavonoid, gum, glycoside, saponin, tannin, and phenol presences. The total phenolic and flavonoid contents of MOLE are 260 mg GAE/g and 755 mg RUE/g of extract. MOLE (IC 50 55.6 ± 0.18 µg/mL) showed functional DPPH scavenging assay comparable to ascorbic acid (IC 50 46.71 ± 0.24 µg/mL). In the alpha-amylase inhibitory activity, Acarbose showed an IC 50 value of 19.45 ± 0.26 µg/mL, while MOLE portrayed an IC 50 value of 27.54 ± 0.07 µg/mL. Docking studies revealed that most phenolic compounds found within MOLE have minimum docking scores and high binding affinity against Human pancreatic alpha-amylase.ConclusionsThe invitro and docking results suggest that MOLE has been a viable natural bioactive source and might be a great potential source for future antidiabetic medicine.  相似文献   

3.
The knowledge of the access paths connecting interior of molecular systems with surrounding environment is important for the understanding of structurefunction relationships and engineering of molecules for biotechnological applications. CAVER is a computer program developed for calculations of tunnels, channels or pores in the biomolecules, inorganic materials and molecular ensembles. The algorithm performs a skeleton search based on a reciprocal distance function grid. The algorithm is implemented in the stand-alone version, web version and as plug-in for PyMol. CAVER is available from the website http://loschmidt.chemi.muni.cz/caver.  相似文献   

4.
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABAA mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABAA receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABAA receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.  相似文献   

5.
Potassium channels in plant cells   总被引:1,自引:0,他引:1  
Dreyer I  Uozumi N 《The FEBS journal》2011,278(22):4293-4303
Potassium (K(+) ) is the most abundant inorganic cation in plant cells. Unlike animals, plants lack sodium/potassium exchangers. Instead, plant cells have developed unique transport systems for K(+) accumulation and release. An essential role in potassium uptake and efflux is played by potassium channels. Since the first molecular characterization of K(+) channels from Arabidopsis thaliana in 1992, a large number of studies on plant potassium channels have been conducted. Potassium channels are considered to be one of the best characterized class of membrane proteins in plants. Nevertheless, knowledge on plant potassium channels is still incomplete. This minireview focuses on recent developments in the research of potassium transport in plants with a strong focus on voltage-gated potassium channels.  相似文献   

6.
Hidden Markov models (HMMs) provide an excellent analysis of recordings with very poor signal/noise ratio made from systems such as ion channels which switch among a few states. This method has also recently been used for modeling the kinetic rate constants of molecular motors, where the observable variable—the position—steadily accumulates as a result of the motor's reaction cycle. We present a new HMM implementation for obtaining the chemical-kinetic model of a molecular motor's reaction cycle called the variable-stepsize HMM in which the quantized position variable is represented by a large number of states of the Markov model. Unlike previous methods, the model allows for arbitrary distributions of step sizes, and allows these distributions to be estimated. The result is a robust algorithm that requires little or no user input for characterizing the stepping kinetics of molecular motors as recorded by optical techniques.  相似文献   

7.
8.
The association of a sample illumination apparatus for supporting ultra thin films with a microprobe (MOLE) spectral analysis system allowed us to obtain non-resonant Raman spectra of phospholipid films. Films as thin as 75 Å have yielded useful spectra.  相似文献   

9.
Anion channels are well documented in various tissues, cell types and membranes of algae and higher plants, and current evidence supports their central role in cell signaling, osmoregulation, plant nutrition and metabolism. It is the aim of this review to illustrate through a few selected examples the variety of anion channels operating in plant cells and some of their regulation properties and unique physiological functions. In contrast, information on the molecular structure of plant anion channels has only recently started to emerge. Only a few genes coding for putative plant anion channels from the large chloride channel (CLC) family have been isolated, and current molecular data on these plant CLCs are presented and discussed. A major challenge remains to identify the genes encoding the various anion channels described so far in plant cells. Future prospects along this line are briefly outlined, as well as recent advances based on the use of knockout mutants in the model plant Arabidopsis thaliana to explore the physiological functions of anion channels in planta.  相似文献   

10.
Voltage-gated sodium channels initiate action potentials in brain neurons. In the 1970s, much was known about the function of sodium channels from measurements of ionic currents using the voltage clamp method, but there was no information about the sodium channel molecules themselves. As a postdoctoral fellow and staff scientist at the National Institutes of Health, I developed neurotoxins as molecular probes of sodium channels in cultured neuroblastoma cells. During those years, Bruce Ransom and I crossed paths as members of the laboratories of Marshall Nirenberg and Philip Nelson and shared insights about sodium channels in neuroblastoma cells from my work and electrical excitability and synaptic transmission in cultured spinal cord neurons from Bruce’s pioneering electrophysiological studies. When I established my laboratory at the University of Washington in 1977, my colleagues and I used those neurotoxins to identify the protein subunits of sodium channels, purify them, and reconstitute their ion conductance activity in pure form. Subsequent studies identified the molecular basis for the main functions of sodium channels—voltage-dependent activation, rapid and selective ion conductance, and fast inactivation. Bruce Ransom and I re-connected in the 1990s, as ski buddies at the Winter Conference on Brain Research and as faculty colleagues at the University of Washington when Bruce became our founding Chair of Neurology and provided visionary leadership of that department. In the past decade my work on sodium channels has evolved into structural biology. Molecular modeling and X-ray crystallographic studies have given new views of sodium channel function at atomic resolution. Sodium channels are also the molecular targets for genetic diseases, including Dravet Syndrome, an intractable pediatric epilepsy disorder with major co-morbidities of cognitive deficit, autistic-like behaviors, and premature death that is caused by loss-of-function mutations in the brain sodium channel NaV1.1. Our work on a mouse genetic model of this disease has shown that its multi-faceted pathophysiology and co-morbidities derive from selective loss of electrical excitability and action potential firing in GABAergic inhibitory neurons, which disinhibits neural circuits throughout the brain and leads directly to the epilepsy, premature death and complex co-morbidities of this disease. It has been rewarding for me to use our developing knowledge of sodium channels to help understand the pathophysiology and to suggest potential therapeutic approaches for this devastating childhood disease.  相似文献   

11.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

12.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

13.
Part II of this study is based on the continuum mechanics-based molecular dynamics-decorated finite element method (MDeFEM) framework established in Part I. In Part II, the gating pathways of Escherichia coli-MscL channels under various basic deformation modes are simulated. Upon equibiaxial tension (which is verified to be the most effective mode for gating), the MDeFEM results agree well with both experiments and all-atom simulations in literature, as well as the analytical continuum models and elastic network models developed in Part I. Different levels of model sophistication and effects of structural motifs are explored in detail, where the importance of mechanical roles of transmembrane helices, cytoplasmic helices, and loops are discussed. The conformation transitions under complex membrane deformations are predicted, including bending, torsion, cooperativity, patch clamp, and indentation. Compared to atom-based molecular dynamics simulations and elastic network models, the MDeFEM framework is unusually well-suited for simulating complex deformations at large length scales. The versatile hierarchical framework can be further applied to simulate the gating transition of other mechanosensitive channels and other biological processes where mechanical perturbation is important.  相似文献   

14.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

15.
Ion channels allow the movement of ions across cell membranes. Nearly all cells have membranes spanned by ion channels, without which human nerves simply would not work. Ion channels are formed by the aggregation of subunits into a cylindrical configuration that allows a pore, thus forming a kind of tube for ion trafficking. In the present study, the subunits of the human potassium channel are formed by four identical protein chains, whereas for the case of the human sodium channel, the corresponding subunits are actually four hetero-domains formed by the folding of a very large but single protein chain. Since both of the two ion channels are important targets for drug discovery, the 3D (dimensional) structures of their pore regions were developed. On the basis of the 3D models, some important molecular biological mechanisms were discussed that may stimulate novel strategies for therapeutic treatment of the diseases related to ion channel disorders, such as long QT syndrome and chronic pain.  相似文献   

16.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26–Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

17.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

18.
de Araújo DA  Freitas C  Cruz JS 《Life sciences》2011,89(15-16):540-544
The discovery and development of new drugs targeting voltage-gated ion channels are important for treating a variety of medical conditions and diseases. Ion channels are molecular nanostructures expressed ubiquitously throughout the whole body, and are involved in many basic physiological processes. Over the years, natural products have proven useful in the pharmacological assessment of ion channel structure and function, while also contributing to the identification of lead molecules for drug development. Essential oils are complex chemical mixtures isolated from plants which may possess a large spectrum of biological activities most of them of clinical interest. Among their bioactive constituents, terpenes are small to medium-sized components and belong to different chemical groups. Various reports have drawn our attention to the fact that terpenes are novel compounds targeting voltage-gated ion channels. The purpose of this review is to provide a focused discussion on the molecular interaction between monoterpenes and phenylpropenes with voltage-gated ion channels in different biological scenarios.  相似文献   

19.
A Monte Carlo procedure, encoded in the program Blob, has been developed and tested for the purpose of positioning large molecular fragments or small flexible molecules in electron density maps. The search performed by the algorithm appears to be sufficiently thorough to accurately position a small flexible ligand in well-defined density while remaining sufficiently random to offer interesting alternate suggestions for density representing disordered binding modes of a ligand. Furthermore, the algorithm is shown to be efficient enough to accurately position large rigid molecular fragments. In the first of the test cases with large molecular fragments, Blob was surprisingly effective in positioning a poly-alanine model of a 53-residue domain in poor electron density resulting from molecular replacement with a partial model. At 3.0 A resolution the domain was positioned consistently within 0.2 A of its experimentally determined position. Even at 6.0 A resolution Blob could consistently position the domain to within 0.75 A of its actual position. A second set of tests with large molecular fragments revealed that Blob could correctly position large molecular fragments with quite significant deviations from the actual structure. In this test case, fragments ranging from a 170-residue protein domain with a 3.8 A rms deviation from the actual structure to a 22-base pair ideal B-form DNA duplex were positioned accurately in a 3.2 A electron density map derived from multiple isomorphous replacement methods. Even when decreasing the quality of the maps, from a figure of merit of 0.57 to as low as 0. 35, Blob could still effectively position the large protein domain and the DNA duplex. Since it is efficient, can handle large molecular fragments, and works in poor and low resolution maps, Blob could be a useful tool for interpreting electron density maps in de novo structure determinations and in molecular replacement studies. Proteins 1999;36:512-525.  相似文献   

20.
Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号