首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wild type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.  相似文献   

3.
Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.  相似文献   

4.
5.
Liu J  Du X  Ke Y 《FEBS letters》2006,580(5):1405-1410
Human 1A6/downregulated in metastasis (DRIM) is a nucleolar protein with multiple HEAT-repeat motifs (Huntington, elongation factor 3, a subunit of protein phosphatase 2A, target of rapamycin). The yeast homologue to 1A6/DRIM, Utp20, is part of the small subunit processome and functions in 18S RNA processing. In the present study, we utilized the green fluorescent protein as the fusion protein marker to investigate the sequence responsible for 1A6/DRIM accumulation in nucleolus. Deletion sequence analysis demonstrated that a single region located between amino acids 2744 and 2761 at the C-terminus of 1A6/DRIM is capable of nucleolar accumulation. Two basic amino acid clusters within this region are essential for nucleolar accumulation. The sequences required for nucleolar accumulation overlaps the putative nuclear localization signal of 1A6/DRIM.  相似文献   

6.
The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be 899SRKRRSST906 and 949KRKKP953 in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest at cytokinesis, indicating that the NLSs are necessary for Mklp-1 to execute its normal function during cell division. Furthermore, mutation of two serine residues in the first NLS to aspartic acid, which mimics phosphorylation, attenuated its nuclear localization function, suggesting that the function of this NLS might be regulated by phosphorylation.  相似文献   

7.
The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.  相似文献   

8.
9.
Overexpression of p21(cip1) induces cell cycle arrest. Although this ability has been correlated with its nuclear localization, the evidence is not conclusive. The mutants that were used to inhibit its nuclear translocation could no longer bind to several proteins known to interact with the last 25 amino acids of p21(cip1). Here we used point mutation analysis and fusion of the proteins to DsRed to identify which amino acids are essential for the nuclear localization of p21(cip1). We conclude that amino acids RKR(140-142) are essential for nuclear translocation of p21(cip1). While wild-type DsRed-p21 induces cell cycle arrest in 95% of transfected cells, overexpression of cytoplasmatic p21AAA(140-142) arrested only 20% of transfected cells. We conclude that cytoplasmatic p21, with no deletion in the C-terminal region, had a much lower capacity to arrest the cell cycle.  相似文献   

10.
Fused Toes Homolog (FTS) is a member of a group of proteins termed as E2 variants and this group of proteins lacks an active cysteine residue that is required for ubiquitin transfer. We have identified the expression of this protein in early neoplastic stages of cervical cancer and its translocation into nucleus from cytoplasm upon irradiation. Here we have reported that a threonine residue at position 190 is essential for its nucleocytoplasmic shuttling and function. Upon LMB treatment we found that FTS was located in the nucleus and it suggests that direct role of nuclear export signal (NES) is required for the binding to CRM1 and facilitates nuclear export. The threonine residue was phosphorylated and promoted the phosphorylation of EGFR, p38 and JNK facilitating vesicular trafficking of early to late endosomes. Mutational change of the threonine into alanine resulted in the cytoplasmic localization of FTS and failed to phosphorylate EGFR and its downstream effector proteins. In addition the mutation also reduced the number of early endosomes formed and also resulted in the clustering of late endosomes around the perinuclear region. These data suggest that threonine residue of FTS at position 190 is not only essential for its function but also for the formation, maturation and trafficking of early endosomes to late endosome/lysosome, as well as we speculate that FTS may function at a connection point in the vesicle tethering.  相似文献   

11.
Luhn P  Wang H  Marcus AI  Fu H 《Proteins》2007,67(2):479-489
Through bioinformatics and experimental approaches, we have assigned the first biochemical property to a predicted protein product in the human genome as a new 14-3-3 binding protein. 14-3-3 client proteins represent a diverse group of regulatory molecules that often function as signaling integrators in response to various environmental cues and include proteins such as Bad and Foxo. Using 14-3-3 as a probe in a yeast two-hybrid screen, we identified a novel 14-3-3 binding protein with unknown function, initially designated as clone 546. Confocal microscopy revealed that clone 546 localized to the nucleus of mammalian cells. Additional studies show that the gene encoding clone 546 is expressed in many human tissues, including the thymus, as well as a number of cancer cell lines. The interaction of clone 546 with 14-3-3 was confirmed in mammalian cells. Interestingly, this interaction was markedly enhanced by the expression of activated Akt/PKB, suggesting a phosphorylation dependent event. Mutational analysis was carried out to identify Ser479 as the predominant residue that mediates the clone 546/14-3-3 association. Phosphorylation of Ser479 by AKT/PKB further supports a critical role for Akt/PKB in regulation of the clone 546/14-3-3 interaction. On the basis of these findings, we named this undefined protein FAKTS: Fourteen-three-three associated AKT Substrate.  相似文献   

12.
NAP-1, a protein first isolated from mammalian cells, can introduce supercoils into relaxed circular DNA in the presence of purified core histones. Based on its in vitro activity, it has been suggested that NAP-1 may be involved in nucleosome assembly in vivo. We isolated a cDNA clone encoding a soybean NAP-1 homolog, SNAP-1. The SNAP-1 cDNA contains an open reading frame of 358 amino acid residues with a calculated molecular weight of 41 kDa. The deduced amino acid sequence of SNAP-1 shares sequence similarity with yeast NAP-1 (38%) and human hNRP (32%). Notable features of the deduced sequence are two extended acidic regions thought to be involved in histone binding. SNAP-1 expressed in Escherichia coli induces supercoiling in relaxed circular DNA, suggesting that SNAP-1 may have nucleosome assembly activity. The specific activity of SNAP-1 is comparable to that of HeLa NAP-1 in an in vitro assay. Western analysis reveals that SNAP-1 is expressed in the immature and young tissues that were examined, while mature tissues such as old leaves and roots, show very little or no expression. NAP-1 homologs also appear to be present in other plant species.  相似文献   

13.
Agrobacterium tumefaciens is able to transfer a piece of DNA, the T-DNA, to the nucleus of the plant cell. The VirD2 protein is required for the production of the T-DNA, it is tightly linked to the T-DNA and it is thought to direct it to the plant genome. Two nuclear localization signals (NLS), one in the N-terminal part and one in the C-terminal part of the VirD2 protein, have been shown to be able to target marker proteins to the plant nucleus. Here we analyze nuclear entry of the T-DNA complex using a new and very sensitive assay for T-DNA transfer. We show that optimal T-DNA transfer requires the VirD2 NLS located in the C-terminal part of the protein, whereas mutations in the N-terminal NLS coding sequence seem to have no effect on T-DNA transfer.  相似文献   

14.
The human I-mfa domain-containing protein (HIC) mRNA produces two protein isoforms, HIC p32 and p40, synthesized from alternative translational initiations. p32 translation is initiated from a standard AUG codon and p40 is an N-terminal extension of p32 generated from an upstream GUG codon. The two isoforms show different subcellular localization: p32 is distributed throughout the cytoplasm whereas p40 can be found both in the cytoplasm and the nucleolus. To investigate the possibility that p40 contains a nucleolus targeting sequence in its N-terminal region, COS cells were transfected with an eukaryotic expression vector coding for green fluorescent protein (GFP) fused to the p40 N terminus. The localization of this fusion protein in the nucleolus indicated that the N-terminal amino acids of p40 probably contain a nucleolar localization signal (NoLS). To find the structural motifs required for nucleolar localization of p40, deletion mutants were expressed in COS cells as fusion polypeptides with GFP. We defined a domain of 19 amino acids near the N terminus that contains an arginine-rich subdomain that conforms to other known NoLS. To demonstrate that this sequence is an authentic NoLS, the sequence was fused to GFP. This fusion protein was observed to migrate into the nucleolus. Taken together, our studies demonstrate that p40 contains a NoLS.  相似文献   

15.
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.  相似文献   

16.
17.
The calprotectin (MRP8/14) protein complex belongs to the S100 family of Ca2+ binding proteins and is expressed during myelomonocytic differentiation. MRP8/14 plasma levels were determined by ELISA in 35 patients with active pulmonary tuberculosis (TB) showing mild (n = 12), moderate (n = 11) or severe (n = 12) disease, 13 patients with active pulmonary sarcoidosis (SR) and 21 healthy controls. TB patients had significantly increased plasma levels of MRP8/14 in comparison with SR and controls, which significantly depended on the volume of lung tissue involved in the inflammatory process. In TB patients, there was no correlation between plasma levels of MRP8/14 and total white blood cell (WBC) count, and blood polymorphonuclear neutrophil (PMN) count. In SR patients, MRP8/14 plasma levels were twofold higher in comparison with controls, but were lower compared with mild TB, and correlated with PMN and WBC counts. Human monocytes infected and cultured for 7 days with Mycobacterium bovis bacillus Calmette-Guérin showed fivefold higher MRP8/14 levels in supernatants compared with unstimulated or purified protein derivative-stimulated cells. Human MRP8/14 significantly increased Mycobacterium tuberculosis H37Rv growth in liquid medium in a dose- and time-dependent manner. These findings suggest that MRP8/14 plays an important role in the immunopathogenesis of tuberculosis.  相似文献   

18.
19.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号