首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The times and emergence of permanent teeth were ascertained by examining 1,263 Khasi children (615 males and 648 females), aged 5 to 15 years. Gingival emergence of the first 28 permanent teeth was recorded and the data were subjected to probit analysis to compute the mean (and standard deviation) emergence time of each individual tooth. Tooth emergence in females was markedly earlier than in males, and canines were most advanced in this respect. Females acquired all their teeth in shorter time span (5.5 years) than males (6.5 years). There were no decisive sex differences in the sequence of tooth emergence. The differences in emergence times between antimeres were statistically nonsignificant. The length of hiatus between two active emergence dental stages was shorter for the maxilla than for the mandible. It occurred between lateral incisor and first premolar in the maxilla of both the sexes, while in case of the mandible, it was spaced between lateral incisor and canine. The Khasis showed early emergence when compared to other populations. The findings support the earlier reports that the controls of deciduous-tooth emergence continue to play some part in emergence of the permanent dentition, especially the first permanent teeth that emerge.  相似文献   

2.
The chronology of tooth emergence is often used to examine the growth and development of individuals and to compare life histories across species. Emergence patterns are also used to age animals and to infer life history influences for extinct species. However, comparative studies of primates are hindered by a lack of dental development data for many species. Here we describe the sequences and timing of tooth emergence for a large sample of semi-free-ranging mandrills (Mandrillus sphinx) and compare this with other life history variables for this species. Deciduous dentition emerged in the sequence i1 i2 c p3 p4. The augmented sequence (including information about variability in emergence sequence) was i1 i2 [c p3] p4 for the female maxilla and the male mandible, and i1 i2 c p3 p4 for the female mandible and the male maxilla. Deciduous dentition was complete by 5.0 months in females and 6.4 months in males. The permanent dentition began to emerge at 26 months, and complete adult dentition had emerged by 68 months for males and 85 months for females. Sex differences occurred in the augmented eruption sequences: females M1 I1 I2 [M2 C] P3 P4 M3, males M1 I1 [I2 M2] [P4 = P3 = C] M3. The order of tooth eruption and the occurrence of sequence polymorphisms were very similar to those observed for baboons and macaques. Comparison with life history variables showed that mandrills have complete deciduous dentition at weaning, females possess both adult incisors and M1 when they first reproduce, but still have deciduous canines and premolars, and that both sexes have full adult dentition before they attain their full adult stature and mass.  相似文献   

3.
Late eruption of the permanent dentition was recently proposed as a shared anatomical feature of endemic African mammals (Afrotheria), with anecdotal reports indicating that it is also present in dasypodids (armadillos). In order to clarify this question, and address the possiblity that late eruption is shared by afrotherians and dasypodids, we quantified the eruption of permanent teeth in Dasypus, focusing on growth series of D. hybridus and D. novemcinctus. This genus is the only known xenarthran that retains two functional generations of teeth. Its adult dentition typically consists of eight upper and eight lower ever-growing (or euhypsodont) molariforms, with no premaxillary teeth. All but the posterior-most tooth are replaced, consistent with the identification of a single molar locus in each series. Comparison of dental replacement and skull metrics reveals that most specimens reach adult size with none or few erupted permanent teeth. This pattern of growth occurring prior to the full eruption of the dentition is similar to that observed in most afrotherians. The condition observed in Dasypus and many afrotherians differs from that of most other mammals, in which the permanent dentition erupts during (not after) growth, and is complete at or near the attainment of sexual maturity and adult body size. The suture closure sequence of basicranial and postcranial epiphyses does not correlate well with dental eruption. The basal phylogenetic position of the taxon within dasypodids suggests that diphyodonty and late dental replacement represent the condition of early xenarthrans. Additionally, the inferred reduction in the number of molars to a single locus and the multiplication of premolars represent rare features for any living mammal, but may represent apomorphic characters for Dasypus.  相似文献   

4.
Obesity is a growth-promoting process as evidenced by its effect on the timing of puberty. Although studies are limited, obesity has been shown to affect the timing of tooth eruption. Both the timing and sequence of tooth eruption are important to overall oral health. The purpose of this study was to examine the association between obesity and tooth eruption. Data were combined from three consecutive cycles (2001-2006) of the National Health and Nutrition Examination Survey (NHANES) and analyzed to examine associations between the number of teeth erupted (NET) and obesity status (BMI z-score >95th percentile BMI relative to the Centers for Disease Control and Prevention (CDC) growth reference) among children 5 up to 14 years of age, controlling for potential confounding by age, gender, race, and socioeconomic status (SES). Obesity is significantly associated with having a higher average NET during the mixed dentition period. On average, teeth of obese children erupted earlier than nonobese children with obese children having on average 1.44 more teeth erupted than nonobese children, after adjusting for age, gender, and race/ethnicity (P < 0.0001). SES was not a confounder of the observed associations. Obese children, on average, have significantly more teeth erupted than nonobese children after adjusting for gender, age, and race. These findings may have clinical importance in the area of dental and orthodontic medicine both in terms of risk for dental caries due to extended length of time exposed in the oral cavity and sequencing which may increase the likelihood of malocclusions.  相似文献   

5.
This study was undertaken to investigate the effect of developmental stage of the dentition on speech sound production in children with and without articulatory speech disorders. In the whole sample, there were 281 subjects, mean age 7.5 years (SD 0.4). The stage of the eruption of the permanent incisors was calculated as the percentage height of each tooth of the mean crown height of the corresponding tooth in a group of 252 young adults. Eruptional stage of the first permanent molars was classified into three categories. Articulatory disorders were diagnosed by one experienced speech therapist and phoniatrician using the Remes Articulation Test [Remes, 1975] for the Finnish language. The results showed a wide interindividual variation in developmental stage of the dentition in a group of 7-year-old children with a tendency of the first permanent molars but not the incisors to erupt earlier in girls than in boys. Boys had a higher frequency of misarticulations estimated to need treatment than did girls. The present results indicate that during eruption of permanent teeth it is more important to draw attention to symmetrical eruption and to individual timing pattern rather than to the mean values of tooth eruption in subjects of the same age. The findings also suggest a decreasing risk of faulty speech sound production with advancing eruption of some permanent teeth still present in 7-year-old children.  相似文献   

6.
Recent comparisons of humans with apes and early fossil hominids have prompted renewed interest in the study of sequences of dental growth and development. Such comparisons, however, rely on certain assumptions about tooth development and dental homology and the biological reality of distinguishing “deciduous” from “permanent” teeth. In light of earlier suggestions by Schwartz that there might be a correlation between nerves and the stem progenitors of tooth classes, and thus between nerve branch number and number of tooth classes, we studied a large sample of ~ 3 month fetuses to elucidate the nature of nerve branching patterns and the development of the primary dentition (i.e., the “deciduous” incisors, canine, and molars, and the first “permanent” molar). Contrary to expectation, variation in nerve branch patterning was the rule. If nerve fibers do have a role in tooth development, it can only be at the time of initiation, with definitive innervation occurring late in tooth development. In taking into consideration the entire span of tooth development—from initiation to innervation to eruption—and the process by which successional teeth arise (each from the external dental epithelium of a predecessor tooth), we suggest that dividing tooth growth and eruption into patterns of the “deciduous” teeth vs. those of the “permanent” is artificial and that a more meaningful approach would be the study of the entire dentition.  相似文献   

7.
In spite of a resurgence of interest in the interpretation of the sequences of dental development and eruption in various Plio-Pleistocene hominoids as being either “modern human” or “ape-like,” the body of comparative material on the extant hominoids remains deficient in critical areas. In concert with recent attempts to rectify this situation, we present the results of our studies on dental morphogenesis in the orangutan. We have focused on the growth and eruption of the deciduous dentition as well as early stages of permanent tooth formation and have found that 1) many permanent teeth develop earlier than was thought, 2) differences exist between development in the upper and in the lower jaw, and 3) states of tooth formation can vary significantly among individuals of similar chronological age or tooth eruption status.  相似文献   

8.
Schultz's rule (as reconstructed by Smith) states that there is a relationship between the pattern (or relative order) of eruption of molar versus secondary (replacement) teeth and the overall pace (or absolute timing) of growth and maturation. Species with 'fast' life histories (rapid dental development, rapid growth, early sexual maturation, short life spans) are said to exhibit relatively early eruption of the molars and late eruption of the secondary replacement teeth (premolars, canines, incisors), whereas species with 'slow' life histories are said to exhibit relatively late eruption of the molars and early eruption of the secondary dentition. In a recent review, B.H. Smith noted that primates with tooth combs might violate this rule because tooth combs tend to erupt early, regardless of the pace of life history. We show that exceptions to Schultz's rule among lemurs are not limited to the relative timing of eruption of the tooth comb. Rather, among lemurs, some species with extremely accelerated dental development exhibit a pattern of eruption of molars and of secondary teeth in direct opposition to the expectations of Schultz's rule. We focus particularly on the pattern (order) and pace (absolute timing) of dental development and eruption in Avahi and Lepilemur - two relatively small, nocturnal folivores with rapid dental development. These taxa differ markedly in their eruption sequences (the premolars erupt after M2 and M3 in Lepilemur but not Avahi ). We offer an explanation for the failure of Schultz's rule to predict these differences. Schultz's rule presumes that eruption timing is dependent on the size of the jaw and that, therefore, molar crown formation and eruption will be delayed in species with slow-growing jaws. We show that a variety of processes (including developmental imbrication) allows the crowns of permanent teeth to form and to erupt into jaws that might appear to be too small to accommodate them.  相似文献   

9.
Patterns of permanent tooth emergence in Gujjars were studied in a cross-sectional sample of 483 children ranging in age from 6 to 13 years. Females were markedly advanced in permanent tooth emergence times over males, but no such sex differences were observed in sequence of emergence. Differences between median emergence times of right and left side antimers were significant for only 4 of 28 instances (14.29%), namely central incisors, mandibular first molars in males and lateral maxillary incisors in females. In general mandibular teeth except premolars tended to emerge earlier than their maxillary counterparts. The quiescent period between first and second tooth emergence stages was longer in males than in females. Mandibular depth and morphological facial length were very significantly correlated (p < 0.01) with the number of permanent teeth present in the oral cavity.  相似文献   

10.
11.
Juvenile material with the main focus on the upper jaw of the fossil predator Hyaenodon was evaluated to study the tooth eruption sequence and to examine the ontogeny of its dentition in detail. The comparison in size of milk to permanent teeth indicates a growth rate of 12–16 % in Hyaenodon. The thin section of a deciduous canine of a North American taxon shows four dental rings. Based on the knowledge of recent carnivores, this implies an age of 3–4 years in the last stage of tooth eruption and thus a long juvenile phase. The mandibles ascertained the most recent established tooth eruption sequence for North American and European species. For the first time ever, juvenile material from Asia is documented and interpreted. This study likewise shows a difference in the sequence of the upper jaw: the first upper premolar erupts before the first upper molar in North American species, whereas the European taxa show an earlier eruption of the first upper molar. This fact further confirms the divergence between the Hyaenodon lineages from North America and Europe.  相似文献   

12.
Tooth dimensions in 104 males and females with agenesis of one or more permanent teeth, other than third molars, have been examined. The amounts of size reduction from normal in mesiodistal and buccolingual tooth diameters appear to be independent. Also some apparent differences from normal tooth size variability were noted. Interestingly, first molars and canines, both considered to be stable components of the dentition, showed significant variability in tooth size. In addition the incidence of individual tooth agenesis within this sample was noted and maxillary lateral incisor was most frequently absent in both sexes.  相似文献   

13.
The forensic determination of the age of living people has become increasingly important in recent years. With regard to the relevant age group, the radiographic assessment of third-molar mineralisation is of particular importance. So far, the influence of geographic origin on the mineralisation rate has been insufficiently analysed. The paper is based on a total of 595 conventional orthopantomograms of 474 male and 121 female Black Africans aged between 10 and 26 years for whom dates of birth were known. The mineralisation status of third molars was evaluated based on Demirjian's classification of stages [Demirjian et al., 1973. A new system of dental age assessment. Hum. Biol. 45, 221-227]. This study presents the means and standard deviations, median values and the lower and upper quartiles separately for both sexes for the mineralisation stages D-H. Statistically significant differences between the upper and lower jaws were observed in males examined with regard to their attaining the stage F. Mandibular teeth developed 0.8 years earlier than maxillary teeth. Significant sex-specific differences were found with regard to the age at which tooth 38 reached the stage G. In females, tooth 38 reached stage G 1.5 years earlier than in males. In comparison to White probands, the Black African sample showed a tendency to achieve the mineralisation stages earlier. We would recommend using population-specific standards for age determination purposes.  相似文献   

14.
Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans.  相似文献   

15.
To identify the times of emergence of the permanent teeth of Canadian Eskimos (Inuit), 368 children and adolescents were examined. The presence or absence of all permanent teeth except the third molars was recorded and these data subjected to probit analysis. Female emergence times were advanced over males. Generally, the Inuit of both sexes showed statistically significant earlier emergence times than Montreal children, except for the incisors. The present results do not support hypotheses indicating that premature extraction of the deciduous teeth advances the emergence of their succedaneous counterparts. There is some indication the controls of deciduous tooth emergence continue to play some part in emergence of the permanent dentition, especially the first permanent teeth that emerge.  相似文献   

16.
Dogfish sharks (Squaliformes) are a highly diverse group of neoselachians occurring in a wide range of marine environments and are common members of deep-sea faunas. The order Squaliformes comprises six families with approximately 98 extant species. The dentition of most squaliforms is characterized by a strong dignathic heterodonty and dental variation yielding a suite of potential tooth characters that could be used for taxonomic and systematic purposes. So far, no detailed study has been carried out to analyse the use of tooth morphologies in reconstructing the phylogeny of squaliforms. Also, the degree of characteristics of intraspecific variability of tooth morphologies is still unclear. Here, we analysed the dental differences between juveniles and adults and between the sexes of the Giant lantern shark, Etmopterus baxteri, and tested these dental characters for taxonomic purposes employing different statistical procedures. The results show that upper teeth of adult females and males differ morphologically in that those of females are bigger and display a lanceolate central cusp, whereas male specimens have thin and needle-like central cusps. Upper teeth of males have a higher number and a more pronounced variability of lateral cusplets than those of females. Moreover, an ontogenetic heterodonty might be developed in male specimens with sexually immature males displaying similar dental morphologies to those of adult females. Lower teeth, conversely, do not differ morphologically between the sexes. Results indicate that tooth morphologies of squaliform sharks bear high potential for phylogenetic purposes if tooth variations are considered, but have to be treated with care, if no variation is analysed.  相似文献   

17.
18.
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.  相似文献   

19.
Mean values and variances of deciduous and permanent tooth dimensions were compared between 121 45,X (Turner syndrome) females and 171 control subjects to clarify the role of the X chromosome on dental development. Although deciduous molars tended to be smaller than normal in 45,X females, there was no evidence of a reduction in tooth size for deciduous anterior teeth. In the permanent dentition, all mesiodistal dimensions were significantly smaller in 45,X females but only some of the buccolingual dimensions were smaller. The findings for deciduous tooth-size may reflect a sampling effect related to the extremely high frequency of spontaneous abortion in 45,X individuals. Results for permanent teeth are consistent with the concept of a decrease in enamel thickness in 45,X females.  相似文献   

20.
Teeth develop in the mammalian embryo via a series of interactions between odontogenic epithelium and neural crest-derived ectomesenchyme of the early jaw primordia. The molecular interactions required to generate a tooth are mediated by families of signalling molecules, which often act reiteratively in both a temporal and spatial manner. Whilst considerable information is now available on how these molecules interact to produce an individual tooth, much less is known about the processes that control overall tooth number within the dentition. However, a number of mouse models are now starting to provide some insight into the mechanisms that achieve this. In particular, co-ordinated restriction of signalling molecule activity is important in ensuring appropriate tooth number and there are different requirements for this suppression in epithelial and mesenchymal tissues, both along different axes of individual jaws and between the jaws themselves. There are a number of fundamental mechanisms that facilitate supernumerary tooth formation in these mice. A key process appears to be the early death of vestigial tooth primordia present in the embryo, achieved through the suppression of Shh signalling within these early teeth. However, restriction of WNT signalling is also important in controlling tooth number, with increased transduction being capable of generating multiple tooth buds from the oral epithelium or existing teeth themselves, in both embryonic and adult tissues. Indeed, uncontrolled activity of this pathway can lead to the formation of odontogenic tumours containing multiple odontogenic tissues and poorly formed teeth. Finally, disrupted patterning along the buccal–lingual aspect of the jaws can produce extra teeth directly from the oral epithelium in a duplicated row. Together, all of these findings have relevance for human populations, where supernumerary teeth are seen in association with both the primary and permanent dentitions. Moreover, they are also providing insight into how successional teeth form in both embryonic and post-natal tissues of the jaws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号