首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinone content of whole and sonicated horse-chestnut chloroplasts was studied over a period of 6 months. Whole chloroplasts show a steady increase of plastoquinone A and C concentrations from May to September. By September 1 about 0.5 μmoles PQ A and about 0.3 μmoles PQ C plus D per mg chlorophyll are found in whole chloroplasts. The osmiophilic globule fraction of sonicated chloroplasts contains traces of PQ A but no PQ C in May. By October 5 equal amounts of PQ A and PQ C plus D (0.15 μmoles per mg chlorophyll) are found in horse-chestnut globules. By Oct. 15 the PQ A content increases at least 20-fold, the PQ C content at least 7-fold. The lamellae fraction of sonicated horse-chestnut chloroplasts contains 0.05 μmoles PQ A and 0.03 μmoles PQ C plus PQ D in May. By October 15 about 0.3 μmoles PQ A and 0 1 μmoles PQ C per mg chlorophyll can be found in lamellae. The total amount of plastoquinones accumulated in the globules accounts for up to 20% of the total accumulation in the chloroplast during the season.  相似文献   

2.
The total lipids of axenically cultivated cells of Porphyridium cruentum were extracted with aqueous methanol-chloroform mixture and fractionated into neutral and polar lipids by silicic acid column chromatography. Thin-layer and reversed-phase paper chromatographic analyses of the neutral lipid fractions revealed the occurrence of plastoquinones (PQ) A and C, vitamin K1 (K), ubiquinone-10 (Q10), α-tocopherol (α-T), and α-tocopherolquinone (α-TQ) in the photoautotrophically cultured alga, and the same quinones but no tocopherol in the alga grown photoheterotrophically on glycerol. The plastoquinone A and vitamin K1 were isolated, identified, and estimated by spectroscopic methods. The results indicated the following decreasing order of concentrations: autotrophic culture, PQ A > K > Q10 > PQ C, α-TQ, α-T; heterotrophic culture, PQ A > Q10 > K > PQ C, α-TQ. Except for the absence of plastoquinone B, the overall quinonoid composition was in general agreement with those previously reported for multicellular members of Rhodophyta, but the concentration level in total lipid was markedly lower.  相似文献   

3.
Plastoquinone B   总被引:1,自引:1,他引:0       下载免费PDF全文
A compound found in spinach and other higher plants previously referred to as R 263 has now been found to be a breakdown product of plastoquinone B. This quinone, PQ B, is found with 8 other quinones in spinach chloroplasts. These 9 quinones are PQ A, PQ B, PQ C, PQ D (7, 8, 15) Vitamin K1 (10, 12), an unknown naphthoquinone (13) and α-, β- and γ-tocopherylquinones (7, 12). An improved method for purification of plastoquinone B is described. Previous confusion of this compound with other quinoid material on silica gel is described and corrected RF values are given. The activity of PQ B is similar to the activity of PQ C in restoration studies of the photo-reduction of ferricyanide and indophenol.  相似文献   

4.
Barr R  Crane FL 《Plant physiology》1967,42(9):1255-1263
The distribution of plastoquinones A 45, B and C was studied in representatives from 34 different plant families beginning with liverworts and mosses to higher plants. All of these species, including many monocots and dicots, contained significant amounts of the 3 quinones. Two species of Aesculus contained plastoquinone A 20 in addition to plastoquinone A 45, B, and C. Many dicots, such as Aesculus, watermelon, tobacco and tomato accumulated increasing quantities of plastoquinones A and C1-C4 during the growing season. The concentrations of plastoquinones B and C5-C6 tended to remain at a constant low level during the season (<0.01 μmole per mg chlorophyll). Preliminary studies with bean plants (Vicia faba and Phaseolus sp.) indicate that the levels of quinones varied little under different growth conditions (day length and temp.) although Vicia faba tended to have higher PQ A values with increased temperature.  相似文献   

5.
The 2H/1H ratio of carbon‐bound H in biolipids holds potential for probing plant lipid biosynthesis and metabolism. The biochemical mechanism underlying the isotopic differences between lipids from C3 and C4 plants is still poorly understood. GC‐pyrolysis‐IRMS (gas chromatography‐pyrolysis‐isotope ratio mass spectrometry) measurement of the 2H/1H ratio of leaf lipids from controlled and field grown plants indicates that the biochemical isotopic fractionation (ε2Hlipid_biochem) differed between C3 and C4 plants in a pathway‐dependent manner: ε2HC4 > ε2HC3 for the acetogenic pathway, ε2HC4 < ε2HC3 for the mevalonic acid pathway and the 1‐deoxy‐D‐xylulose 5‐phosphate pathway across all species examined. It is proposed that compartmentation of photosynthetic CO2 fixation into C4 mesophyll (M) and bundle sheath (BS) cells and suppression of photorespiration in C4 M and BS cells both result in C4 M chloroplastic pyruvate – the precursor for acetogenic pathway – being more depleted in 2H relative to pyruvate in C3 cells. In addition, compartmentation in C4 plants also results in (i) the transferable H of NADPH being enriched in 2H in C4 M chloroplasts compared with that in C3 chloroplasts for the 1‐deoxy‐D‐xylulose 5‐phosphate pathway pathway and (ii) pyruvate relatively 2H‐enriched being used for the mevalonic acid pathway in the cytosol of BS cells in comparison with that in C3 cells.  相似文献   

6.
Polyadenylated RNA was isolated from maize leaves and translated in vitro. In agreement with a previous report by others, we found among the translation products a 110-kilodalton pyruvate orthophosphate dikinase (PPDK) precursor that is about 16 kilodaltons larger than the polypeptide isolated from cells. This maize PPDK precursor polypeptide was taken up from the translation product mixture by intact spinach chloroplasts and yielded a mature PPDK polypeptide (94 kilodaltons). The uptake and processing support the proposal that the extra 16-kilodalton size of the polypeptide from in vitro translation of maize leaf mRNA represents a transit sequence which is cleaved after its entry into chloroplasts. Moreover, these results provide additional evidence that in vivo in maize leaf cells PPDK polypeptide is synthesized in the cytoplasm and is transported into the chloroplasts.

Location of PPDK in C3 plant leaves was investigated by immunochemical analysis. Intact chloroplasts were isolated from leaves of spinach, wheat, and maize. A protein blot of stromal protein in each case gave rise to bands corresponding to authentic PPDK polypeptide. This result indicates that PPDK is present in chloroplasts of C3 plant leaves as it is in the case of C4 plants.

  相似文献   

7.
3-Phosphoglycerate (PGA)-dependent O2 evolution by mesophyll chloroplasts of the C4 plant, Digitaria sanguinalis L. Scop. (crabgrass), was inhibited by micromolar levels of 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). As little as 1.8 micromolar DIDS added to the assay medium (containing 0.7 millimolar PGA) resulted in 80 to 100% inhibition of O2 evolution. The extent of inhibition of O2 evolution observed was dependent on various factors including: pH, concentration of DIDS to relative chlorophyll, concentration of PGA, and the time of addition of DIDS to the chloroplasts relative to addition of PGA.

Preincubation of crabgrass chloroplasts with micromolar levels of DIDS, followed by washing to remove any nonirreversibly bound DIDS, inhibited PGA-dependent O2 evolution. Protection against this inhibition was afforded by preincubating the chloroplasts with various substrates before adding DIDS. For example, if the chloroplasts were first incubated with 8.3 millimolar PGA, phosphoenolpyruvate (PEP) or inorganic phosphate before adding 42 micromolar DIDS, the percentage of inhibition was decreased from 100% (without any substrate) to 0, 54, and 67%, respectively. 2-Phosphoglycerate caused a slight decrease in the inhibition (about 10%) and glucose-6-phosphate had no protective effect. If the chloroplasts were pretreated with DIDS initially, the inhibition could not be overcome by PGA, suggesting that DIDS acts as an irreversible inhibitor. Micromolar levels of DIDS also inhibited PGA dependent O2 evolution by isolated chloroplasts of the C3 plant barley. As with crabgrass, preincubation with PGA or inorganic phosphate resulted in a decrease in the DIDS inhibition, but PEP was very ineffective compared to the C4 chloroplasts.

Oxalacetate-dependent O2 evolution and its stimulation by the uncoupler, NH4Cl, were unaffected by the addition of DIDS to crabgrass mesophyll chloroplasts. Furthermore, preincubation of the chloroplasts with DIDS (up to 65 micromolar) had no inhibitory effect on the extractable activity of NADP glyceraldehyde-3-P dehydrogenase and phosphoglycerate kinase. Inhibition by DIDS was interpreted to be at the substrate binding site of the phosphate translocator. The data further suggest that in C4 crabgrass chloroplasts, PEP is transported on a carrier which also transports PGA.

  相似文献   

8.
The relationship between the structure of reconstituted plastoquinone derivatives and their ability to recover the Hill reaction was investigated by extraction and reconstitution of lyophilized chloroplasts from spinach, followed by monitoring DCIP photoreduction at 600 nm. The results show that: It is not essential that the plastoquinone side chain be an isoprenoid or a phytol; the activity increases with increasing length of the side chain up to 13–15 carbon atoms; for chains longer than 15 carbon atoms, the activity is practically constant. Lipophilic groups (such as -Br) in the side chain increased the activity, hydrophilic groups (such as -OH) decreased the activity. Conjugated double bonds in the side chain decreased the activity greatly, but non-conjugated double bonds had almost no effect on the activity, indicating a requirement of flexibility of the side chain. The activity is decreased in the order of PQ, UbiQ and MQ, showing a large effect of the ring structure.Abbreviations DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - QA primary electron acceptor in PS II reaction centers - QB secondary electron acceptor in PS II reaction centers - PQ n plastoquinones with an isoprenoid side chain (n, number of the isoprenoid units in the side chain) - PQ-n synthetic plastoquinones with alkyl side chain (n, number of the carbon atoms in the alkyl side chain) - PQ-n synthetic plastoquinones with a double bond in the alkyl side chain - UQ n ubiquinones with an isoprenoid side chain (n, number of the isoprenoid units in the side chain) - UQ-n synthetic ubiquinones with alkyl side chain (n, number of the carbon atoms in the akyl side chain) - MQ-n 2-alkyl-1,4-naphthoquinone (n, number of the carbon atoms in the alkyl side chain)  相似文献   

9.
Huber SC 《Plant physiology》1978,62(3):321-325
Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution.

Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes.

  相似文献   

10.
A lipid requirement for photosystem I activity in Spinacia oleracea chloroplasts has been characterized. The transfer of electrons from tetramethyl-p-phenylenediamine through the chloroplast photosystem to viologen dye was used as an assay of photosystem I activity. Activity is diminished by prolonged heptane extraction and is partially restored by readdition of the extracted lipid. Extracted chloroplasts require plastocyanin for maximal restoration of activity. The effect of lipid extract in restoration is partially replaced by triglycerides containing unsaturated, C18 fatty acids. Various potential redox carriers which occur naturally in chloroplasts do not substitute for extracted lipid. Galacto-lipids, sulfolipids, and phospholipids are not involved in the restoration of activity.  相似文献   

11.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

12.
This is the first report not only on the presence of polyprenyl phosphates and their site of synthesis in algae, but also on the formation of their sugar derivatives in this system.

A glucose acceptor lipid was isolated from the nonphotosynthetic alga Prototheca zopfii. The lipid was acidic and resistant to mild acid and alkaline treatments. The glucosylated lipid was labile to mild acid hydrolysis and resistant to phenol treatment and catalytic hydrogenation, as dolichyl phosphate glucose is. These results are consistent with the properties of an α-saturated polyprenyl phosphate.

The polyprenylic nature of the lipid was confirmed by biosynthesis from radioactive mevalonate. The [14C]lipid had the same chromatographic properties as dolichyl phosphate in DEAE-cellulose and Sephadex LH-20. Strong alkaline treatment and enzymic hydrolysis liberated free alcohols with chain lengths ranging from C90 to C105, C95 and C100 being the most abundant molecular forms. The glucose acceptor activity of the biosynthesized polyprenyl phosphate was confirmed.

The ability of different subcellular fractions to synthesize dolichyl phosphate was studied. Mitochondria and the Golgi apparatus were the sites of dolichyl phosphate synthesis from mevalonate.

  相似文献   

13.
14CO2 photoassimilation in the presence of MgATP, MgADP, and MgAMP was investigated using intact chloroplasts from Sedum praealtum, a Crassulacean acid metabolism plant, and two C3 plants: spinach and peas. Inasmuch as free ATP, ADP, AMP, and uncomplexed Mg2+ were present in the assays, their influence upon CO2 assimilation was also examined. Free Mg2+ was inhibitory with all chloroplasts, as were ADP and AMP in chloroplasts from Sedum and peas. With Sedum chloroplasts in the presence of ADP, the time course of assimilation was linear. However, with pea chloroplasts, ADP inhibition became progressively more severe, resulting in a curved time course. ATP stimulated assimilation only in pea chloroplasts. MgATP and MgADP stimulated assimilation in all chloroplasts. ADP inhibition of CO2 assimilation was maximal at optimum orthophosphate concentrations in Sedum chloroplasts, while MgATP stimulation was maximal at optimum or below optimum concentrations of orthophosphate. MgATP stimulation in peas and Sedum and ADP inhibition in Sedum were not sensitive to the addition of glycerate 3-phosphate (PGA).

PGA-supported O2 evolution by pea chloroplasts was not inhibited immediately by ADP; the rate of O2 evolution slowed as time passed, corresponding to the effect of ADP on CO2 assimilation, and indicating that glycerate 3-phosphate kinase was a site of inhibition. Likewise, upon the addition of AMP, inhibition of PGA-dependent O2 evolution became more severe with time. This did not mirror CO2 assimilation, which was inhibited immediately by AMP. In Sedum chloroplasts, PGA-dependent O2 evolution was not inhibited by ADP and AMP. In chloroplasts from peas and Sedum, the magnitude of MgADP and MgATP stimulation of PGA-dependent O2 evolution was not much larger than that given by ATP, and it was much smaller than MgATP stimulation of CO2 assimilation. Analysis of stromal metabolite levels by anion exchange chromatography indicated that ribulose 1,5-bisphosphate carboxylase was inhibited by ADP and stimulated by MgADP in Sedum chloroplasts.

The appearance of label in the medium was measured when [U-14C] ADP-loaded Sedum chloroplasts were challenged with ATP, ADP, or AMP and their Mg2+ complexes. The rate of back exchange was stimulated by the presence of Mg2+. This suggests that ATP, ADP, and AMP penetrate the chloroplast slower than their Mg2+ complexes. A portion of the CO2 assimilation and O2 evolution data could be explained by differential penetration rates, and other proposals were made to explain the remainder of the observations.

  相似文献   

14.

Pretreatment with ionic liquids (IL) such as 1-ethyl-3-methylimidazolium chloride or acetate is an effective method for aiding deconstruction of lignocellulosic biomass; however, the residual IL remaining in hydrolysates can be inhibitory to growth of ethanologenic or oleaginous yeasts that have been examined in the literature. The aim of this study was to identify oleaginous yeasts that are tolerant of the IL [C2C1Im][OAc] and [C2C1Im]Cl using 45 strains belonging to 38 taxonomically diverse species within phyla Ascomycota and Basidiomycota. Yeasts were cultivated in laboratory medium supplemented with 0, 2, or 4% IL in 96-well plates. The eight most tolerant strains were then cultivated in 10-mL media with no IL, 242mM [C2C1Im][OAc], or 242mM [C2C1Im]Cl. The effects of [C2C1Im]+ exposure on cell mass production and lipid accumulation varied at the species and strain level. The acetate salt decreased cell biomass and lipid production more severely than did the chloride ion for six strains. Lipid output was not markedly different (2.1 vs. 2.3 g/L) in Yarrowia lipolytica UCDFST 51-30, but decreased from 5 to 65% in other yeasts. An equimolar concentration of the chloride salt resulted in much milder effects, from 25% decrease to 66% increase in lipid output. The highest lipid outputs in this media were 8.3 and 7.9 g/L produced by Vanrija humicola UCDFST 10-1004 and UCDFST 12-717, respectively. These results demonstrated substantial lipid production in the presence of [C2C1Im]Cl at concentrations found in lignocellulosic hydrolysates, and thus, these two strains are ideal candidates for further investigation.

  相似文献   

15.

The Chenopodiaceae is one of the families including C4 species among eudicots. In this family, the genus Chenopodium is considered to include only C3 species. However, we report here a transition from C3 photosynthesis to proto-Kranz to C3–C4 intermediate type in Chenopodium. We investigated leaf anatomical and photosynthetic traits of 15 species, of which 8 species showed non-Kranz anatomy and a CO2 compensation point (Γ) typical of C3 plants. However, 5 species showed proto-Kranz anatomy and a C3-like Γ, whereas C. strictum showed leaf anatomy and a Γ typical of C3–C4 intermediates. Chenopodium album accessions examined included both proto-Kranz and C3–C4 intermediate types, depending on locality. Glycine decarboxylase, a key photorespiratory enzyme that is involved in the decarboxylation of glycine, was located predominantly in the mesophyll (M) cells of C3 species, in both M and bundle-sheath (BS) cells in proto-Kranz species, and exclusively in BS cells in C3–C4 intermediate species. The M/BS tissue area ratio, number of chloroplasts and mitochondria per BS cell, distribution of these organelles to the centripetal region of BS cells, the degree of inner positioning (vacuolar side of chloroplasts) of mitochondria in M cells, and the size of BS mitochondria also changed with the change in glycine decarboxylase localization. All Chenopodium species examined were C3-like regarding activities and amounts of C3 and C4 photosynthetic enzymes and δ13C values, suggesting that these species perform photosynthesis without contribution of the C4 cycle. This study demonstrates that Chenopodium is not a C3 genus and is valuable for studying evolution of C3–C4 intermediates.

  相似文献   

16.
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have two types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. in this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.Key words: abscisic acid, aggregative movement, avoidance movement, blue light, bundle sheath cell, C4 plant, chloroplast, cytoskeleton, environmental stress, mesophyll cellChloroplasts can change their intracellular positions to optimize photosynthetic activity and/or reduce photodamage occurring in response to light irradiation. On treating with high-intensity light, the chloroplasts move away from the light to minimize photodamage (avoidance response). Meanwhile, on irradiating with low-intensity light, they move toward the light source to maximize photosynthesis (accumulation response). These chloroplast-photorelocation movements are observed in a wide variety of plant species from green algae to seed plants,13 although little attention has been paid to C4 plants. There is a report stating that monocotyledonous C4 plants showed changes in the light transmission of leaves in response to blue light,4 although the direction of migration of the chloroplasts is not described.C4 plants have two types of photosynthetic cells: mesophyll (M) cells and bundle sheath (BS) cells, which have numerous well-developed chloroplasts. BS cells surround the vascular tissues, while M cells encircle the cylinders of the BS cells (Fig. 1). The C4 dicarboxylate cycle of photosynthetic carbon assimilation is distributed between the two cell types, and acts as a CO2 pump to concentrate CO2 in the BS chloroplasts.5,6 C4 plants are divided into three subtypes on the basis of decarboxylating enzymes: NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase. Although the M chloroplasts of all C4 species are randomly distributed along the cell walls, BS chloroplasts are located either in a centripetal (close to the vascular tissue) or in a centrifugal (close to M cells) position, depending on the species (Fig. 1A).7 Thus, C4 M and BS cells have different systems for chloroplast positioning: an M cell-specific system for dispersing chloroplasts and a BS cell-specific system for holding chloroplasts in a centripetal or centrifugal disposition.Open in a separate windowFigure 1The intracellular arrangement of chloroplasts in finger millet (Eleusine coracana), an NAD-ME-type C4 plant. (A) Light micrograph of a transverse section of a leaf blade from a control plant. Bundle sheath (BS) cells surround the vascular tissues, while mesophyll (M) cells encircle the cylinders of the BS cells. BS chloroplasts are well developed, and are located in a centripetal position, whereas M chloroplasts are randomly distributed along the cell walls. B, bundle sheath cell; M, mesophyll cell; V, vascular bundle. (B) Transverse section of a leaf blade from a drought-stressed plant. Most M chloroplasts are aggregatively distributed toward the BS side, while the centripetal arrangement of BS chloroplasts is unchanged. (C and D) Transverse sections of leaf segments irradiated with blue light of intensity 500 µmol m−2 s−1 with or without 30 µM ABA for 8 h (C and D, respectively). The adaxial side of each leaf section (upper side in the photograph) was illuminated. In the absence of ABA, M chloroplasts exhibited avoidance movement on the illuminated side and aggregative movement on the opposite side. In the presence of ABA, aggregative movement was observed on both sides. Scale bars = 50 µm.  相似文献   

17.
Summary Hydrogen photoproduction has been achieved by coupling free or immobilized hydrogenases from Desulfovibrio species to illuminated chloroplasts through different electron mediators. Whereas D. gigas flavodoxin or ferredoxin I cannot directly mediate the electron flux from chloroplasts to hydrogenase, the addition of these mediators considerably enhances the H2 photoproduction of a system including cytochrome C3. These immobilized hydrogenases exhibit good stability under working conditions and can be re-used.  相似文献   

18.
Enzymatic digestion of leaf segments with 2% cellulase, in combination with a pectinase in some species, yields intact protoplasts mixed with epidermal tissue, vascular tissue, broken protoplasts, and chloroplasts. Epidermal and vascular tissue are removed with sieves of various porosity. Intact protoplasts in the filtrate are separated from other components by an aqueous two-phase system which consists of dextran-polyethylene glycol, with sorbitol and sodium phosphate. Intact protoplasts partition at the interphase, while chloroplasts and broken protoplasts partition in the lower phase when the separation is facilitated by low speed centrifugation. The optimum conditions for purification of maize mesophyll protoplasts with high yields are centrifugation of the two-phase system at 300g for 6 minutes at 2 C with a mixture including 0.46 m sorbitol, 10 mm sodium phosphate, 5.5% polyethylene glycol 6000, and 10% dextran of average molecular weight of 20,000 to 40,000. The collection of protoplasts at the inter-phase was proportional to the amount of chlorophyll added over a wide range of concentrations regardless of the initial contamination of the preparation by other cellular debris. The two-phase system is applicable for protoplast purification from a wide variety of species, including C3, C4, and Crassulacean acid metabolism plants, regardless of protoplast size.  相似文献   

19.
Abstract

C3 and C4 plant carbonic anhydrases (CAs) are zinc-enzymes that catalyze the reversible hydration of CO2. They are sub-divided in three classes: α, β and γ, being distributed between both photosynthetic subtypes. The C4 dicotyledon species Flaveria bidentis (L.) “Kuntze” contains a small gene family encoding three distinct β-CAs, named FbiCA1, FbiCA2 and FbiCA3. We have expressed and purified recombinant FbiCA1, which is localized in the chloroplast where it is thought to play a role in lipid biosynthesis and antioxidant activity, and biochemically characterized it by spectroscopic and inhibition experiments. FbiCA1 is a compact octameric protein that is moderately inhibited by carboxylate molecules. Surprisingly, pyruvate, but not lactate, did not inhibit FbiCA1 at concentrations up to 10?mM, suggesting that its capacity to tolerate high pyruvate concentration reflects the high concentration of pyruvate in the chloroplasts of bundle-sheath and mesophyll cells involved in C4 photosynthesis.  相似文献   

20.
Exposure of isolated chloroplasts of pea (Pisum sativum L.) to temperatures above 35° C leads to a stimulation of photosystem-I-mediated electron transport from dichlorophenolindophenol to methyl viologen. The threshold temperature for this stimulation coincides closely with that for heat-induced inhibition of photosystem-II activity in such chloroplasts. This coincidence is explained in terms of a rearrangement of the thylakoid membrane resulting in the exposure of a new set of donor sites for dichlorophenolindophenol within the cytochrome f/b 6 complex of the electron-transport chain linking the two photosystems.Abbreviations cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCPIP (H2) 2,6-dichlorophenolindophenol - EDAC ethyldimethylaminopropyl-carbodiimide - MV methyl viologen - PSI, II photosystem I, II - PCy plastocyanin - PQ(H2) plastoquinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号