首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

2.
3.
We have investigated whether chemokine signaling to the extracellular-signal-regulated kinase (ERK) was regulated by beta 1-integrin-mediated adhesion in B- and T-cell lines. Activation of ERK by the chemokine SDF-1 can be regulated by adhesion to beta 1-integrin substrates in the T-cell lines MOLT-3, Jurkat, and H9 and in the Daudi B-cell line. In Jurkat T-cells, adhesion to the immobilized alpha 4 beta 1-integrin ligand VCAM-1 or to the alpha 5 beta 1-integrin ligand fibronectin regulated stromal-cell derived factor-1 (SDF-1) activation of ERK. Adhesion control of SDF-1 signaling was a rapid event, occurring as early as 10 min after adhesion, and loss of signaling occurred within 10 min of deadhesion. In contrast, SDF-1 activation of the ERK kinase MEK was independent of adhesion. Partial restoration of signaling to ERK in suspension was accomplished by pretreatment with pharmacological inhibitors of serine/threonine or protein-tyrosine phosphatases. In addition, we used a non-radioactive phosphatase assay using phosphorylated ERK as the substrate to determine relative ERK dephosphorylation in whole cell extracts. These results showed greater relative ERK dephosphorylation in extracts from Jurkat cells treated in suspension, as compared with adherent cells. Therefore, these data suggest that adhesion influences SDF-1 activation of ERK by regulating the activity of ERK phosphatases. This identifies a novel locus of adhesion regulation of the ERK cascade.  相似文献   

4.
The interaction between the integrin alpha(4)beta(7) and its ligand, mucosal addressin cell adhesion molecule-1, on high endothelial venules represents a key adhesion event during lymphocyte homing to secondary lymphoid tissue. Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine that attracts T and B lymphocytes and has been hypothesized to be involved in lymphocyte homing. In this work we show that alpha(4)beta(7)-mediated adhesion of CD4(+) T lymphocytes and the RPMI 8866 cell line to mucosal addressin cell adhesion molecule-1 was up-regulated by SDF-1alpha in both static adhesion and cell detachment under shear stress assays. Both naive and memory phenotype CD4(+) T cells were targets of SDF-1alpha-triggered increased adhesion. In addition, SDF-1alpha augmented alpha(4)beta(7)-dependent adhesion of RPMI 8866 cells to connecting segment-1 of fibronectin. While pertussis toxin totally blocked chemotaxis of CD4(+) and RPMI 8866 cells to SDF-1alpha, enhanced alpha(4)beta(7)-dependent adhesion triggered by this chemokine was partially inhibited, indicating the participation of Galpha(i)-dependent as well as Galpha(i)-independent signaling. Accordingly, we show that SDF-1alpha induced a rapid and transient association between its receptor CXCR4 and Galpha(i), whereas association of pertussis toxin-insensitive Galpha(13) with CXCR4 was slower and of a lesser extent. SDF-1alpha also activated the small GTPases RhoA and Rac1, and inhibition of RhoA activation reduced the up-regulation of alpha(4)beta(7)-mediated lymphocyte adhesion in response to SDF-1alpha, suggesting that activation of RhoA could play an important role in the enhanced adhesion. These data indicate that up-regulation by SDF-1alpha of lymphocyte adhesion mediated by alpha(4)beta(7) could contribute to lymphocyte homing to secondary lymphoid tissues.  相似文献   

5.
Lymphocytes possess the essential components of a cholinergic system, including acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulation of lymphocytes with phytohemagglutinin, which activates T cells via the T cell receptor/CD3 complex, enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. In addition, activation of protein kinase C and increases in intracellular cAMP also enhance cholinergic activity in T cells, and lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) is an important mediator of leukocyte migration and T cell activation. Anti-CD11a monoclonal antibody (mAb) as well as antithymocyte globulin containing antibodies against CD2, CD7 and CD11a all increase ChAT activity, ACh synthesis and release, and expression of ChAT and M(5) mAChR mRNAs in T cells. The cholesterol-lowering drug simvastatin inhibits LFA-1 signaling by binding to an allosteric site on CD11a (LFA-1 alpha chain), which leads to immunomodulation. We found that simvastatin abolishes anti-CD11a mAb-induced increases in lymphocytic cholinergic activity in a manner independent of its cholesterol-lowering activity. Collectively then, these results indicate that LFA-1 contributes to the regulation of lymphocytic cholinergic activity via CD11a-mediated pathways and suggest that simvastatin exerts its immunosuppressive effects in part via modification of lymphocytic cholinergic activity.  相似文献   

6.
Abstract

The chemokine stromal cell-derived factor-1 (SDF-1) regulates the trafficking of progenitor cell (PGC) during embryonic development, cell chemotaxis, and postnatal homing into injury sites. SDF-1 also regulates cell growth, survival, adhesion and angiogenesis. However, in different tissues/cells, the role of SDF-1 is different, such as that it is increased in most of the tumors and associated with cancer metastasis, whereas it is essential for the development of vasculature. For kidney diseases, its role remains controversial. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for SDF-1 to the investigators who were interested in the role of SDF-1 in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of SDF-1 and its role in the pathogenesis of kidney diseases.  相似文献   

7.
The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.  相似文献   

8.
The chemokine, stromal cell-derived factor-1 alpha (SDF-1 alpha) and its receptor CXCR-4 (fusin, LESTR) are thought to be involved in the trafficking of hematopoietic progenitors and stem cells, as suggested by the chemotactic effect of SDF-1 alpha on these cells. Gene inactivation studies have shown that both SDF-1 alpha and CXCR-4 are essential for B lymphopoiesis. Migration of leukemic cells may also be dependent on SDF-1 alpha and CXCR-4. Fibronectin (FN) is a component of the extracellular matrix (ECM), and one of the natural supports for cell movement in their bone hematopoietic environment. In the present study, we examined the influence of FN on the chemotactic effect of SDF-1 alpha and on the CXCR-4 expression and function on human precursor-B acute lymphoblastic leukemia (pre-B ALL) cells at sequential stages of development. Fourteen children with pre-B ALL were studied. Their immunophenotypes belonged to the first three stages of B cell differentiation. Despite relatively high levels of CXCR-4 expression at all stages, the responsiveness to SDF-1 alpha, measured as the percentage of migrating cells in the transwell culture system, varied with patients and seems to be less significant for pre-B3 (and pre-B1) than for pre-B2. There was no correlation (r = 0.2) between the SDF-1 alpha induced migration (range: 2.5-39%) and the cell surface density of CXCR-4 (range: 46.5-97.5%). The extracellular matrix protein FN, either coated on the filter (for more than 18 hours) or in soluble form, enhanced the SDF-1 alpha induced migration of pre-B ALL respectively (2 fold and 1.6 fold) without influencing CXCR-4 expression in short term cultures. Therefore, we analyzed the expression of the FN receptors, VLA-4 (CD49d) and VLA-5 (CD49e), by direct immunofluorescence, on these leukemic cells. VLA-4 was strongly expressed in all stages of pre-B ALL (range: 77-97%) while VLA-5 expression was more variable (range: 14-94%), but no correlation with the FN-dependent increased SDF-1 alpha chemotactic effect was noted. In conclusion, the migratory behavior of pre-B leukemic cells in response to SDF-1 alpha partly depends upon the stage of differentiation, and partly upon unexplained patient variability. Our results suggest that several molecules from the extracellular matrix, such as FN, may be implicated in this phenomenon.  相似文献   

9.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   

10.
The integrin VLA-4 (alpha(4)beta(1)) mediates tethering and rolling events as well as firm adhesion of leukocytes to VCAM-1. Unlike selectins, VLA-4 integrin-mediated lymphocyte adhesiveness can be modulated by chemokines through intracellular signaling pathways. To investigate the effects of the chemokine stromal cell-derived factor-1alpha (SDF-1alpha) on VLA-4-mediated lymphocyte adhesion, human PBL were flowed over VCAM-1 substrates in a parallel plate flow chamber with surface-immobilized SDF-1alpha, a potent activator of firm adhesion. The initial tethering interactions had a median lifetime of 200 ms, consistent with the half-life of low-affinity VLA-4-VCAM-1 bonds. Immobilized SDF-1alpha acted within the lifetime of a primary tether to stabilize initial tethering interactions, increasing the likelihood a PBL would remain interacting with the surface. As expected, the immobilized SDF-1alpha also increased the ratio of PBL firm adhesion to rolling. An LDV peptide-based small molecule that preferentially binds high-affinity VLA-4 reduced PBL firm adhesion to VCAM-1 by 90%. The reduction in firm adhesion due to blockage of high-affinity VLA-4 was paralleled by a 4-fold increase in the fraction of rolling PBL. Chemokine activation of PBL firm adhesion on VCAM-1 depended on induction of high-affinity VLA-4 rather than recruitment of a pre-existing pool of high-affinity VLA-4 as previously thought.  相似文献   

11.
CXCL12 (SDF-1alpha) and CXCR4 are critical for embryonic development and cellular migration in adults. These proteins are involved in HIV-1 infection, cancer metastasis, and WHIM disease. Sequestration and presentation of CXCL12 to CXCR4 by glycosaminoglycans (GAGs) is proposed to be important for receptor activation. Mutagenesis has identified CXCL12 residues that bind to heparin. However, the molecular details of this interaction have not yet been determined. Here we demonstrate that soluble heparin and heparan sulfate negatively affect CXCL12-mediated in vitro chemotaxis. We also show that a cluster of basic residues in the dimer interface is required for chemotaxis and is a target for inhibition by heparin. We present structural evidence for binding of an unsaturated heparin disaccharide to CXCL12 attained through solution NMR spectroscopy and x-ray crystallography. Increasing concentrations of the disaccharide altered the two-dimensional (1)H-(15)N-HSQC spectra of CXCL12, which identified two clusters of residues. One cluster corresponds to beta-strands in the dimer interface. The second includes the amino-terminal loop and the alpha-helix. In the x-ray structure two unsaturated disaccharides are present. One is in the dimer interface with direct contacts between residues His(25), Lys(27), and Arg(41) of CXCL12 and the heparin disaccharide. The second disaccharide contacts Ala(20), Arg(21), Asn(30), and Lys(64). This is the first x-ray structure of a CXC class chemokine in complex with glycosaminoglycans. Based on the observation of two heparin binding sites, we propose a mechanism in which GAGs bind around CXCL12 dimers as they sequester and present CXCL12 to CXCR4.  相似文献   

12.
13.
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is expressed by bone marrow (BM) stromal cells and plays key roles in cell homing to and retention into the bone marrow. In multiple myeloma, blood-borne malignant plasma cells home to the BM and accumulate in contact with stromal cells, implicating myeloma cell migration across endothelium. Myeloma cells express the SDF-1alpha receptor CXCR4, as well as the integrin alpha4beta1, which mediates their attachment to BM stroma. We show here that SDF-1alpha promotes transendothelial migration of purified BM myeloma cells and myeloma-derived NCI-H929 cells, involving a transient upregulation of alpha4beta1-dependent cell adhesion to the endothelium. Characterization of intracellular signaling pathways involved in the modulation by SDF-1alpha of alpha4beta1-mediated myeloma cell adhesion revealed that intracellular cAMP amounts associated with the activation of protein kinase A play key roles in this modulation. Furthermore, a functional link between cAMP actions on the dynamics of actin cytoskeleton, RhoA activation, and alpha4beta1-dependent cell adhesion in response to SDF-1alpha has been found. The regulation of alpha4beta1-mediated myeloma cell adhesion by SDF-1alpha could play key roles during myeloma cell homing into and trafficking inside the BM, and characterization of the molecular events involved in SDF-1alpha-activated modulation of this adhesion will contribute to a better understanding of mechanisms participating in cell migration.  相似文献   

14.
Stromal cell-derived factor 1α (SDF-1) is not only a major chemotactic factor, but also an inducer of angiogenesis. The effects of SDF-1α on the left ventricular remodeling in a rat myocardial infarction (MI) model were analyzed. Myocardial infarction was induced by ligation of the left coronary artery in rats. 0.5 × 1010 pfu/ml AdV-SDF-1 or 0.5 × 1010 pfu/ml Adv-LacZ were immediately injected into the infarcted myocardium, 120 μl cell-free PBS were injected into the infarcted region or the myocardial wall in control, and sham group, respectively. We found that AdV-SDF-1 group had higher LVSP and ±dP/dtmax, lower LVEDP compared to control or Adv-LacZ group. The number of c-Kit+ stem cells, and gene expression of SDF-1, VEGF and bFGF were obviously increased, which was associated with reduced infarct size, thicker left ventricle wall, greater vascular density and cardiocytes density in infarcted hearts of AdV-SDF-1 group. Furthermore, the expression of collagen type I and type III mRNA, and collagen accumulation in the infarcted area was lower, which was associated with decreased TGF-β1, TIMP-1 and TIMP-2 expression in AdV-SDF-1 group. Conclusion: SDF-1α could improve cardiac structure and function after Myocardial infarction through angiogenic and anti-fibrotic actions.  相似文献   

15.
The possible involvement of the Rho-p160ROCK (Rho coiled-coil kinase) pathway in the signaling induced by the chemokine Stromal cell-derived factor (SDF)-1alpha has been studied in human PBL. SDF-1alpha induced activation of RhoA, but not that of Rac. RhoA activation was followed by p160ROCK activation mediated by RhoA, which led to myosin light chain (MLC) phosphorylation, which was dependent on RhoA and p160ROCK activities. The kinetics of MLC activation was similar to that of RhoA and p160ROCK. The role of this cascade in overall cell morphology and functional responses to the chemokine was examined employing different chemical inhibitors. Inhibition of either RhoA or p160ROCK did not block SDF-1alpha-induced short-term actin polymerization, but induced the formation of long spikes arising from the cell body, which were found to be microtubule based. This morphological change was associated with an increase in microtubule instability, which argues for an active microtubule polymerization in the formation of these spikes. Inhibition of the Rho-p160ROCK-MLC kinase signaling cascade at different steps blocked lymphocyte migration and the chemotaxis induced by SDF-1alpha. Our results indicate that the Rho-p160ROCK axis plays a pivotal role in the control of the cell shape as a step before lymphocyte migration toward a chemotactic gradient.  相似文献   

16.
Stimulation of T lymphocytes with the ligand for the CXCR4 chemokine receptor stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), results in prolonged activation of the extracellular signal-regulated kinases (ERK) ERK1 and ERK2. Because SDF-1alpha is unique among several chemokines in its ability to stimulate prolonged ERK activation, this pathway is thought to mediate special functions of SDF-1alpha that are not shared with other chemokines. However, the molecular mechanisms of this response are poorly understood. In this study we show that SDF-1alpha stimulation of prolonged ERK activation in Jurkat T cells requires both the ZAP-70 tyrosine kinase and the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) scaffold protein. This pathway involves ZAP-70-dependent tyrosine phosphorylation of SLP-76 at one or more of its tyrosines, 113, 128, and 145. Because TCR activates ERK via SLP-76-mediated activation of the linker of activated T cells (LAT) scaffold protein, we examined the role of LAT in SDF-1alpha-mediated ERK activation. However, neither the SLP-76 proline-rich domain that links to GADS and LAT, nor LAT, itself are required for SDF-1alpha to stimulate SLP-76 tyrosine phosphorylation or to activate ERK. Together, our results describe the distinct mechanism by which SDF-1alpha stimulates prolonged ERK activation in T cells and indicate that this pathway is specific for cells expressing both ZAP-70 and SLP-76.  相似文献   

17.
Despite extensive studies on the crucial functions of Ras and c-Myc in cellular proliferation and transformation, their roles in regulating cell adhesion are not yet fully understood. Involvement of Ras in modulating integrin activity by inside-out signaling has been recently reported. However, in contrast to R-Ras, H-Ras was found to exhibit a suppressive effect. Here we show that ectopic expression of a constitutively active H-Rasv12, but not c-Myc alone, in a hemopoietic cell line induces activation of very late Ag-4 (VLA-4, alpha4beta1) integrin without changing its surface expression. Intriguingly, coexpression of H-Rasv12 and c-Myc in these cells results in not only the activation of VLA-4, but also the induction of expression of VCAM-1, the counterreceptor for VLA-4, thereby mediating a marked homotypic cell aggregation. In addition, H-Rasv12-induced VLA-4 activation appears to be partly down-regulated by coexpression with c-Myc. Our results represent an unprecedented example demonstrating a novel role for H-Rasv12 in the regulation of cell adhesion via c-Myc-independent and -dependent mechanisms.  相似文献   

18.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a CXC chemokine that interacts with CXCR4 receptor. Tac1 encodes peptides belonging to the tachykinins, including substance P. SDF-1alpha production is decreased in Tac1 knockdown breast cancer cells and is also reduced in these cancer cells following contact with bone marrow stroma when Tac1 expression is increased. Here, we report on the effects of relatively high and low SDF-1alpha levels on Tac1 expression in nontumorigenic breast cells MCF12A. Reporter gene assays, Northern analyses, and ELISA for substance P showed increased Tac1 expression at 20 and 50 ng/mL SDF-1alpha and reduced expression at 100 ng/mL. Omission of the untranslated region showed a dose-dependent effect of SDF-1alpha on reporter gene activity, suggesting that receptor desensitization cannot account for the suppressive effects at 100 ng/mL SDF-1alpha. Tac1 expression at high SDF-1alpha involves an intracellular signaling pathway that incorporates the activation of phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-AKT-nuclear factor-kappaB (NF-kappaB). The major repressive effect occurs via NF-kappaB located within exon 1. In summary, NF-kappaB is involved in the repression of Tac1 at higher levels of SDF-1alpha in MCF12A. These results are relevant to dysfunction of Tac1 in breast cancer cells and also provide insights on the behavior of breast cancer cells as they traverse across gradient changes of SDF-1alpha.  相似文献   

19.
The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号