首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloacal swabs were collected from teal (Anas crecca, Anas cyanoptera, Anas discors), mottled duck (Anas fulvigula) and northern pintail (Anas acuta) in Brazoria County, Texas, USA, during February 2001, mottled ducks during August 2001, and blue-winged teal (A. discors) during February 2002. Prevalence of avian influenza virus (AIV) infections during each sampling period were 11, 0, and 15%, respectively. The hemagglutinin (H) subtypes H2 and H7 were detected in both years, while the H8 subtype was detected in 2001 and the H1 subtype was detected in 2002. Avian paramyxovirus type 1 (APMV-1) was isolated from 13% of mottled ducks sampled in August 2001 and 30.7% of teal in February 2002. The season of isolation of both viruses and the majority of the AIV subtypes detected in this study are not typical based on previous reports of these viruses from North American ducks.  相似文献   

2.
An H7N3 avian influenza virus (AIV) was isolated from a Cinnamon Teal (Anas cyanoptera) (A/CinnamonTeal/Bolivia/4537/01) during a survey of wild waterfowl in Bolivia in 2001. The NA and M genes had the greatest identity with North American wild bird isolates, the NS was most closely related to an equine virus, and the remaining genes were most closely related to isolates from an outbreak of H7N3 in commercial poultry in Chile in 2002. The HA protein cleavage site and the results of pathogenesis studies in chickens were consistent with a low-pathogenicity virus, and the infective dose was 10(5) times higher for chickens than turkeys.  相似文献   

3.
Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.  相似文献   

4.
Since the recent spread of highly pathogenic (HP) H5N1 subtypes, avian influenza virus (AIV) dispersal has become an increasing focus of research. As for any other bird-borne pathogen, dispersal of these viruses is related to local and migratory movements of their hosts. In this study, we investigated potential AIV spread by Common Teal (Anas crecca) from the Camargue area, in the South of France, across Europe. Based on bird-ring recoveries, local duck population sizes and prevalence of infection with these viruses, we built an individual-based spatially explicit model describing bird movements, both locally (between wintering areas) and at the flyway scale. We investigated the effects of viral excretion duration and inactivation rate in water by simulating AIV spread with varying values for these two parameters. The results indicate that an efficient AIV dispersal in space is possible only for excretion durations longer than 7 days. Virus inactivation rate in the environment appears as a key parameter in the model because it allows local persistence of AIV over several months, the interval between two migratory periods. Virus persistence in water thus represents an important component of contamination risk as ducks migrate along their flyway. Based on the present modelling exercise, we also argue that HP H5N1 AIV is unlikely to be efficiently spread by Common Teal dispersal only.  相似文献   

5.
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.  相似文献   

6.
7.
Adult survival is a key driver of waterfowl population growth and is subject to temporal and spatial variation. Mottled ducks (Anas fulvigula) are native to the Gulf Coast and peninsular Florida, USA, and have suffered population declines over the past decade, especially in Texas and Louisiana, USA. Although the cause of this decline is not well understood, previous research concluded variation in survival contributed to nearly a third of variation in the species' population growth rate. We used global positioning system-groupe spécial mobile (GPS-GSM) transmitters to study temporal and spatial variation in survival of adult female western Gulf Coast mottled ducks in southwestern Louisiana, 2017–2020. We evaluated weekly survival models parameterized with combinations of hunted and non-hunted periods, biological seasons, and landcover types that were used by mottled ducks. There were 3 competitive survival models, and all contained 4 parameters that parsed the annual cycle into the non-hunted period, first part of the general waterfowl season, and second part of the waterfowl season, and included the proportion of GPS locations in agricultural lands. Weekly survival was 0.979 during the first part of the general waterfowl hunting season, and 0.996 during the second part of the general waterfowl season. Daily survival rate increased with an increasing proportion of locations logged in agricultural lands. Annual survival rates were similar to other waterfowl that are not experiencing population declines, which suggests survival is not limiting population growth of mottled ducks along the western Gulf Coast. Managers should ensure the availability of refuge areas where hunting is prohibited during the first part of the general waterfowl season, when mottled ducks are at an increased risk of mortality, in addition to the targeted conservation of agricultural lands that provide cover and forage.  相似文献   

8.
Cloacal and tracheal swabs were collected from 1,409 hunter-killed ducks in Cameron Parish, Louisiana, during the 1986 and 1987 waterfowl seasons. Thirty avian paramyxoviruses (PMV's) were isolated from 605 blue-winged teal (Anas discors), 75 mottled ducks (A. fulvigula), 375 gadwalls (A. strepera), 334 green-winged teal (A. crecca), and 20 mallards (A. platyrhynchos). Prevalence of PMV decreased (P = 0.042) from September (4%) through November (2%) to December and January (1%). Juveniles had a higher prevalence of PMV (P less than 0.0001) than adults. An isolate from resident mottled ducks documents transmission of PMV's on the coastal wintering areas of Louisiana. The four serotypes isolated, PMV-1, PMV-4, PMV-6, and PMV-8, were typical of PMV's commonly associated with free-living waterfowl.  相似文献   

9.
Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July-October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3-8, and 10-12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity.  相似文献   

10.
An H6N5 avian influenza virus (AIV) strain, designated A/aquatic bird/Korea/CN5/2009 (H6N5), was isolated from fecal swabs of aquatic birds in 2009, and surprisingly, it showed infectivity and pathogenicity in mammalian species without evidence of adaptation. In this study, we report the first complete genome sequence containing 3′ and 5′ noncoding regions (NCRs) of a mammalian species-infectious and pathogenic H6N5 AIV, which will help provide important insights into the molecular basis of pathogenesis, transmission, and evolution of AIV.  相似文献   

11.
[目的]为了对途经三江保护区的野生迁徙水禽携带禽流感病毒(AIV)和新城疫病毒(NDV)的状况进行有效监测.[方法]在2005年10月、2006年4月、2006年10月3个候鸟的迁徙季节从三江保护区采集了158只野鸟的咽拭子和肛拭子样本.应用SPF鸡胚盲传、血凝和血凝抑制试验和RT-PCR等方法进行了病毒的分离和鉴定.[结果]结果共分离到20株AIV和13株NDV.20株AIV均来自2006年10月采集的样品,经常规血清学分型鉴定分为12个亚型,11个亚型来源于绿头鸭,分别为H2N2(2/20),H2N6(2/20),H3N4(1/20),H3N6(2/20),H3N7(2/20),H3N8(2/20),H6N2(2/20),H11N2(1/20),H11N3(1/20),H11N5(2/20),H11N6(1/20),另外一株来源于白眉鸭,为H5N2(1/20).13株NDV则来自3个迁徙季节的5种不同水禽采,其中包括绿头鸭(8/13),豆雁(1/13),白额雁(1/13),绿翅鸭(1/13)和鸳鸯(2/13).[结论]这一结果表明,拥有极大种群数量、在世界范围内广泛分布的绿头鸭,被认为可能是AIV和NDV最重要的自然宿主之一,并在病毒的传播上比其他野生鸟类具有更为重要的生态学意义.  相似文献   

12.
Concerns about the spread of avian influenza viruses (AIVs) have led to cloacal swab sampling of hundreds of thousands of birds worldwide as part of AIV surveillance schemes, but the effects of cloacal swabbing have not been adequately evaluated. We tested for differences between swabbed, swabbed and bled, and non‐sampled wild ducks in terms of live re‐encounter and dead recoveries for Common Pochard Aythya ferina and Tufted Duck Aythya fuligula, and also determined re‐encounter and recovery rates for Mallard Anas platyrhynchos and Common Teal Anas crecca. No effects of sampling methods were detected, except in Teal. Re‐encounter rates were lower in sampled Teal than in controls, with annual re‐encounter probabilities being 25% and 35% lower in males and females, respectively. Teal possibly left or avoided sampling sites, or sought sites where they were less detectable after sampling. In general, no deleterious effects were found, suggesting that cloacal swabbing and blood sampling are suitable methods for conducting AIV surveillance in ducks.  相似文献   

13.
During recent years, extensive amounts of data have become available regarding influenza A virus (IAV) in wild birds in northern Europe, while information from southern Europe is more limited. Here, we present an IAV surveillance study conducted in western Portugal 2008–2009, analyzing 1653 samples from six different species of waterfowl, with the majority of samples taken from Mallards (Anas platyrhynchos). Overall 4.4% of sampled birds were infected. The sampling results revealed a significant temporal variation in the IAV prevalence, including a pronounced peak among predominantly young birds in June, indicating that IAV circulate within breeding populations in the wetlands of western Portugal. The H10N7 and H9N2 subtypes were predominant among isolated viruses. Phylogenetic analyses of the hemagglutinin and neuraminidase sequences of H10N7, H9N2 and H11N3 virus showed that sequences from Portugal were closely related to viral sequences from Central Europe as well as to IAVs isolated in the southern parts of Africa, reflecting Portugal’s position on the European-African bird migratory flyway. This study highlights the importance of Portugal as a migratory crossroad for IAV, connecting breeding stationary waterfowl with birds migrating between continents which enable transmission and spread of IAV.  相似文献   

14.
Biomass estimates of potential waterfowl foods are fundamental to estimating foraging carrying capacity of waterfowl habitat by conservation planners and managers of the North American Waterfowl Management Plan-Gulf Coast Joint Venture (GCJV). Rice and moist-soil seeds in Gulf Coast rice fields provide principal sources of energy for waterfowl during migration and winter. We investigated spatio-temporal biomass dynamics of these seeds and modeled their variation in production and idled rice fields in southwestern Louisiana, southeastern Texas, and the Texas Mid-Coast, USA, in August and November 2010–2013. We hypothesized that previous estimates of November rice and moist-soil seed biomass from the Mississippi Alluvial Valley were not applicable to the GCJV region because climate and agricultural production practices (e.g., ratooning, crayfish [Procambrus spp.] aquaculture) are primary inter-regional contrasts. Waste-rice biomass was greatest in November in fields with an unharvested second crop of rice from tillers of original plants (i.e., ratoon crop; 837.7 kg[dry]/ha; CV = 16.7%) and least in fields without a ratoon crop (119.3 kg/ha; CV = 18.5%). Moist-soil seed biomass was greatest in idled rice fields in October (477.3 kg/ha; CV = 24.8%), where substrate and rice stubble were disked at the time of sampling, and in idled fields with standing native vegetation in November (304.8 kg/ha; CV = 17.1%). Field-level variation in waste rice in production fields in November was best explained by an interaction between field management (e.g., harvested ratoon) and rice variety. We were unable identify a reliable predictor of field-level variation in moist-soil seed biomass in idled fields for July–August or November (i.e., null model was best or competitive). Substituting existing seasonal moist-soil and rice seed biomass estimates in GCJV planning models with those from our study would result in a seasonally flooded habitat objective 76% (101,974 ha) greater than the current GCJV estimate for 3 rice-growing planning areas. We encourage conservation planners in the GCJV region to use biomass estimates from our study because they are reasonably precise for planning and implementation (i.e., CV ~ 20%) and represent most contemporary patterns of farming practices and food abundance in this region. Further, programs and incentives that promote production of ratoon rice crops and allow growth of naturally occurring vegetation in idled rice fields, followed by shallow flooding during November–February, would significantly enhance food resources for waterfowl and other waterbirds in this important landscape for North American avifauna. © 2020 The Wildlife Society.  相似文献   

15.
We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.  相似文献   

16.
Transmission of avian influenza viruses (AIV) between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP) AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC) and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.  相似文献   

17.
Prevalence of the infectious respiratory agens, avian influenza virus (AIV), Mycobacterium avium (M. avium), and Mycobacterium avium subspecies paratuberculosis (MAP), was studied in migratory marsh-dwelling passerines captured in the Parížske močiare wetlands in Western Slovakia during 2008. Surveillance of 650 birds revealed a lower prevalence of AIV in spring (13.6%) than in summer (17.5%). A total of 14 different subtypes were detected in samples obtained from birds captured during the spring, with the most prevalent subtypes being H8N3, H6N4, H11N6 and H12N6. Subtypes H12N6, H6N6 and H2N5 were predominant in passerines captured during summer months. In eight cases, different AIV infections were detected in the oropharyngeal and cloacal samples originating from a single bird (H1N1 and H8N3; H1N3 and H9N3; H2N3 and H12N6; H2N1 and H8N1; H4N2 and H9N6; H5N5 and H11N6; H6N4 and H11N6; H7N1 and H10N3 in the oropharynx and cloaca, respectively). M. avium was detected in 9.2% and 0.8% of marsh-dwelling passerines captured during spring and summer, respectively. Only two birds were co-infected with AIV and M. avium. All birds were negative for MAP.  相似文献   

18.
Waterbirds represent the major natural reservoir for low pathogenic (LP) avian influenza viruses (AIV). Among the wide diversity of subtypes that have been described, two of them (H5 and H7) may become highly pathogenic (HP) after their introduction into domestic bird populations and cause severe outbreaks, as is the case for HP H5N1 in South-Eastern Asia. Recent experimental studies demonstrated that HP H5N1 AIV infection in ducks does not necessarily have significant pathological effects. These results suggest that wild migratory ducks may asymptomatically carry HP AIV and potentially spread viruses over large geographical distances. In this study, we investigated the potential spreading distance of HP AIV by common teal (Anas crecca), mallard (A. platyrhynchos), and Eurasian pochard (Aythya ferina). Based on capture-mark-recapture method, we characterized their wintering movements from a western Mediterranean wetland (Camargue, South of France) and identified the potential distance and direction of virus dispersal. Such data may be crucial in determining higher-risk areas in the case of HP AIV infection detection in this major wintering quarter, and may serve as a valuable reference for virus outbreaks elsewhere.  相似文献   

19.
PETRI NUMMP  HANNU POYSA 《Ibis》1995,137(2):145-150
Breeding success of four duck species, Teal Anas crecca , Mallard Anas platyrhynchos , Wigeon Anas penelope and Goldeneye Bucephala clangula , was studied in a boreal watershed in southern Finland during 1988–1991 in relation to habitat type (based on vegetation development) and food abundance. Of the three common breeders, breeding success (broods/ pair) was highest in Teal (1.7) and lower in Mallard (1.4) and Goldeneye (1.2). Over the years, Goldeneye brood densities were less variable than were pair densities, so breeding success varied more among years that did that of Mallard or Teal. In Teal, the yearly numbers of pairs and broods fluctuated together, whereas in Mallard neither varied appreciably. Breeding success by Goldeneye was higher where nektonic invertebrates were more abundant, whereas breeding success of the dabbling ducks had very few significant correlations with environmental factors.  相似文献   

20.
Mottled ducks (Anas fulvigula) are endemic to the Gulf Coast of North America, and their range stretches from Alabama to the Laguna Madre of Mexico, with a distinct population in peninsular Florida and an introduced population in South Carolina. As one of the few non-migratory ducks in North America, mottled ducks depend on a variety of locally available habitat throughout the annual cycle, and threats to these landscapes may affect mottled ducks more acutely than migratory species. Annual population monitoring has revealed declines in mottled duck populations in Texas and Louisiana since 2008, and the genetic integrity of the Florida population has been muddled by the presence of large numbers of feral mallards (Anas platyrhynchos) resulting in hybridization. Similar to other closely related dabbling ducks, mottled duck populations are influenced by recruitment and breeding season survival, so changes in these factors may contribute to population decline. Accordingly, researchers have attempted to address various aspects of mottled duck breeding season ecology and population dynamics since the 1950s. We conducted a literature review on this topic by searching a combination of key terms using Google Scholar, including mottled duck, nesting ecology, habitat use, breeding incidence, nest success, brood, and breeding season survival, and followed citation trees to eventually aggregate information from nearly 50 publications on mottled duck breeding ecology. Our review concluded that mottled ducks use brackish and intermediate coastal marsh, including managed impoundments, and agricultural land during the breeding season. Their nests can be found in pastures, levees, dry cordgrass marsh, cutgrass marsh, spoil banks, and small islands. Nesting propensity and nest success estimates are often lower than other waterfowl species that are characterized by stable or increasing populations. Broods use wetlands composed of a mix of open water with submerged and emergent vegetation. Breeding season survival is higher for the Florida population than the western Gulf Coast population, but adult survival in both geographies is comparable to (or higher than) that of other dabbling duck species. Breeding habitat use, breeding season survival, and nest-site selection and success have been studied extensively in mottled ducks, whereas information on nesting propensity, renesting intensity, and post-hatch ecology is lacking. © 2021 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号