首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms−1 ranged from 1265 ± 208 μs (P1, N = 18) to 4802 ± 441 μs (N4, N = 13). Amplitudes ranged from 3.72 ± 1.51 μV (P1/N1, N = 18) to 1.49 ± 0.77 μV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from −38.7 ± 7.3 μs dB−1 (P1, N = 18) to −71.6 ± 21.9 μs dB−1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 ± 0.08 μV dB−1 (P1/N1, N = 18) to 0.07 ± 0.04 μV dB−1 (P3/N3, N = 11). The mean response threshold across all animals was −21.83 ± 3.34 dB re: 1.0 g ms−1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail. Accepted: 18 January 1997  相似文献   

2.
To assess the energetics of migration in an anadromous fish, adult American shad (Alosa sapidissima) were swum in a large respirometer at a range of speeds (1.0–2.3 body lengths (BL) s−1, 13–24 °C). Metabolic rate (MO2) was logarithmically related to swimming speed (Bl s−1; r 2 = 0.41, slope = 0.23 ± 0.037) and tailbeat frequency (beats × min−1; r 2 = 0.52, slope = 0.003 ± 0.0003). Temperature had a significant effect on metabolic rate (r 2 = 0.41) with a Q10 of 2.2. Standard metabolic rate (SMR), determined directly after immobilization with the neuroblocker gallamine triethiodide, ranged from 2.2–6.2 mmolO2 kg−1 h−1 and scaled with mass (W) such that SMR = 4.0 (±0.03)W0.695(±0.15). Comparison of directly determined and extrapolated SMR suggests that swimming respirometry provides a good estimate of SMR in this species, given the differences in basal activity monitored by the two methods. Overall, American shad metabolic rates (MO2 and SMR) were intermediate between salmonids and fast-swimming perciforms, including tunas, and may be a result of evolutionary adaptation to their active pelagic, schooling life history. This study demonstrates variability in metabolic strategy among anadromous fishes that may be important to understanding the relative success of different migratory species under varying environmental conditions. Accepted: 3 March 1999  相似文献   

3.
AHSP inhibits cellular production of the reactive oxygen species. Reduced AHSP indicates reduced protection against oxidative stressors. Our objective was to investigate AHSP levels in recurrent miscarriage (RM). Trophoblast was collected from women of 10 weeks gestation: voluntary abortion controls (VA, n = 10); spontaneous first miscarriage with subsequent normal pregnancy (SMSN, n = 15) or with subsequent miscarriage (SMSM, n = 5); RM previously investigated (RMPS, n = 5) or not previously investigated (RM, n = 5). AHSP mRNA and protein were determined using real-time quantitative polymerase chain reaction (PCR) and Western blot, respectively. One-way ANOVA was performed to assess statistical significance (p < 0.05). ahsp mRNA levels were maximally reduced in RM and RMPS (8.0 × 10−6 ± 1.3 and 8.1 × 10−6 ± 0.7, respectively) compared with SMSN and VA (16.1 × 10−6 ± 2.3 and 26.1 × 10−6 ± 2.7, respectively). SMSM showed levels significantly reduced as well (9.0 × 10−6 ± 2.3). In RM, a reduced defense from oxidative stressors is evident at first miscarriage, identifying women at high risk for subsequent eventful pregnancy. Reduced AHSP may identify women at risk of experiencing further miscarriages. Monica Emanuelli and Monia Cecati contributed equally to this paper.  相似文献   

4.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

5.
Using the voltage/current clamp technique in the whole-cell configuration, we studied the role of the highly tetraethylammonium (TEA) -sensitive component of integral potassium current in the generation of high-frequency tonic impulsation by rat retinal ganglion cells (RGCs). Application of 0.5 mM TEA led to a decrease in the frequency of evoked tonic impulsation by RGCs by 63% (from 55 ± 10 sec–1 in the control to 26 ± 5 sec–1 in the presence of the blocker; n = 11). In this case, the duration of single action potentials at the level of 50% their amplitude increased by 64% (from 1.1 ± 0.1 to 1.8 ± 0.1 msec; n = 11), the rate of repolarization decreased by 54% (from −101 ± 9 to −46 ± 5 mV/msec; n = 11), and the amplitude of afterhyperpolarization dropped by 62% (from −16 ± 2 to −6 ± 2 mV; n = 11). Upon the action of 0.5 mM TEA, the amplitude of the integral potassium current in RGCs decreased; the current component sensitive to the above blocker was equal to 0.41 ± 0.05 nA (n = 6), while the respective value in the control was 1.62 ± 0.14 nA (n = 12). Thus, a moderate (on average, by 25%) decrease in the amplitude of the above potassium current significantly influenced the characteristics of impulse activity generated by RGCs. The TEA-sensitive component of the current was similar to the Kv3.1/Kv3.2 potassium current described earlier. The obtained data are indicative of the key role of the highly TEA-sensitive component of the potassium current (passed probably via Kv3.1/Kv3 channels) in high-frequency tonic activity generated by RGCs.  相似文献   

6.
We used a still-water swim channel in conjunction with open-flow oxygen and carbon dioxide respirometry to examine the energy requirements of river-otters (Lutra lutra L.) swimming voluntarily underwater in Neumünster Zoo (Germany). While at rest on land (5 °C), river-otters had a respiratory quotient of 0.77 and a resting metabolic rate of 4.1 W kg−1. This increased to an estimated 6.4 W kg−1 during rest in water (11–15 °C) and to 12.3 W kg−1 when the animals were feeding in the channel. River-otters swimming under water preferred a mean speed of 0.89 m s−1, and their energy requirements attained 11.6 W kg−1. Cost of transport, however, was minimal at 1.3 m s−1 and amounted to 0.95 J N−1 m−1. Accepted: 3 November 1997  相似文献   

7.
Resting proton, ammonium and sodium fluxes in Salmo trutta were 492.6 ± 19.5 (n = 29); 122.9 ± 34.2 (n = 28) and 277.1 ± 18.5 (n = 50) μmol · kg−1 · h−1, respectively. The resting transepithelial potential was found to be composed of three successive potentials, the outermost averaging −7.36 ± 0.19mV, the second, −14.3 ± 1.4 mV and the third −37 ± 1.7 mV. Amiloride inhibits the proton, ammonium and sodium fluxes in a dose-dependent manner at concentrations of 0.5 mmol · 1−1 and 0.1 mmol · l−1, but at 0.01 mmol · l−1, proton and ammonium fluxes remained at control levels whilst the sodium was reduced to 70.59 ± 7.29 μmol · kg−1 · h−1. The trans-epithelial potential was effected in a bi-phasic manner by 0.5 mmol · l−1 amiloride. An initial hyperpolarisation of ca. 6 mV was followed by a sustained depolarisation of ca. 14 mV (towards zero) which persisted until the amiloride was washed off the gill. The initial hyperpolarisation was thought to reflect a rapid inhibition of a positive inward sodium current and the subsequent depolarisation was due to the inhibition of a positive outward current (proton) which would abolish the transepithelial potential. However, at 0.01 mmol ·  l−1 only the hyperpolarisation was seen, due to the inhibition of only the inward sodium current. Acetazolamide (0.1 mmol · l−1) was found to have no significant effect on the proton, ammonium and sodium fluxes. These results indicate that the proton and sodium fluxes across the gill of the freshwater trout are not tightly linked. While this suggests that the trout gill resembles the model of Ehrenburg et al. (1985) of sodium uptake in frog skin, the apical potentials measured in the pavement epithelial cell(s) are too low to account for sodium uptake unless the activity of the sodium in the cells is very low. Accepted: 8 August 1996  相似文献   

8.
Objective Alpha hemoglobin-stabilizing protein (AHSP) inhibits the production of reactive oxygen species in various cells, including erythrocytes. Reduced AHSP can mean reduced protection from stressors. Our objective was to investigate whether AHSP is involved in the response to stress in pregnancy. Study design Placentas were collected from normal term pregnancies (n = 10) and pregnancies complicated by HELLP (n = 10), intrauterine growth restriction (IUGR; n = 10) or fetal death (IUFD; n = 6). AHSP messenger RNA (mRNA) and protein were determined using real time quantitative polymerase chain reaction (PCR) and Western blot, respectively. All statistical analyses were performed by using the GraphPad Prism Software. Differences were considered significant at p < 0.05. Results Placental AHSP mRNA level in HELLP (4.16E10−4 ± 1.77) and IUFD (4.19E10−4 ± 3.37) were significantly decreased compared with controls (28.47E10−4 ± 14.86; p < 0.01), whereas levels in the IUGR group (7.55E10−4 ± 6.4) showed a trend toward being lower but the difference did not reach statistical significance. Western blot analysis results indicate a no significant increase of ASHP protein in the HELLP syndrome group and a significant decrease in the IUFD group compared with controls. There was no significant difference between the IUGR and control groups. Conclusion ASHP mRNA expression in the placenta is decreased in complicated pregnancies, and it may be involved in the pathogenic mechanisms leading to the adverse pregnancy outcome. This paper was presented as a poster at the 27th Annual Meeting of the Society for Maternal Fetal Medicine; San Francisco, CA, USA, February 5–10, 2007. Monica Emanuelli and Davide Sartini contributed equally to this paper.  相似文献   

9.
Annett Hertel  Ernst Steudle 《Planta》1997,202(3):324-335
Using the cell pressure probe, the effects of temperature on hydraulic conductivity (Lp; osmotic water permeability), solute permeability (permeability coefficient, Ps), and reflection coefficients (σs) were measured on internodes of Chara corallina, Klein ex Willd., em R.D.W.. For the first time, complete sets of transport coefficients were obtained in the range between 10 and 35 °C which provided evidence about pathways of water and solutes as they move across the plasma membrane (water channel and bilayer arrays). Test solutes used to check for the selectivity of water channels were monohydric alcohols of different molecular size and shape (ethanol, n-propanol, iso-propanol, and tert-butanol) and heavy water (HDO). Within the limits of accuracy, Q10 values for Lp and for the diffusive water permeability (Pd) were identical (Q10 for Lp = 1.29 ± 0.17 (± SD; n = 15 cells) and Q10 for Pd = 1.25 ± 0.16 (n = 5 cells)). The Q10 values were equivalent to activation energies of Ea = 16.8 ± 6.4 and 16.6 ± 10.0 kJ · mol−1, respectively, which is similar to that of self-diffusion or of viscous flow of water. The Q10 values and activation energies for Ps of the alcohols were significantly larger (ethanol: Q10 = 1.68 ± 0.16, Ea = 37.1 ± 5.9 kJ · mol−1; n-propanol: Q10 =  1.75 ± 0.40, Ea = 43.1 ± 15.3 kJ · mol−1; iso-propanol: Q10 = 2.12 ± 0.42, Ea =  52.2 ± 14.6 kJ · mol−1; tert-butanol: Q10 = 2.13 ± 0.56, Ea = 51.6 ± 17.1 kJ · mol−1; ±SD; n = 5 to 6 cells). Effects of temperature on reflection coefficients were most pronounced. With increasing temperature, σs values of the alcohols decreased and those of HDO increased. The data indicate that water and solutes use different pathways when crossing the membrane. Ordinary and isotopic water use water channels and the other test solutes use the bilayer array (composite transport model of membrane). Changes in σs values with temperature were found to be a sensitive measure for the open/closed state of water channels. The decrease of σs with temperature was theoretically predicted from the temperature dependence of Ps and Lp. Differences between predicted and measured values of σs allowed estimation of the bypass flow (slippage) of solutes through water channels which did not completely exclude test solutes. The permeability of channels depended on the structure and size of test solutes. It is concluded that water channels are much less selective than is usually thought. Since water channels represent single-file or no-pass pores, solutes drag along considerable amounts of water as they diffuse across channels. This results in low overall values of σs. The σs of HDO was extremely low. Its response to temperature was opposite to that for the σs of the alcohols. This suggested a stronger effect of temperature on the hydraulic (osmotic) than on the diffusive water flow across individual water channels, i.e. a differential sensitivity of different mechanisms to temperature. Received: 10 October 1996 / Accepted: 2 December 1996  相似文献   

10.
We studied whether juvenile fishes were able to maintain swimming speed and position during simulated river pulsed flows in a laboratory flume. We used a glass flume (15.24 × 0.6 m) with river-rock substrate to determine the longitudinal displacement, movement distances and frequencies, velocity selection, and substrate use of juvenile (SL range: 6.1 ± 0.2 cm) hardhead Mylopharodon conocephalus (n = 13), rainbow trout Oncorhynchus mykiss (n = 11), and Sacramento sucker Catostomus occidentalis (n = 12) during a 100-min flow pulse, as velocity changed from slow to medium, fast, medium, and slow. Fish were capable of maintaining swimming speed and position up to the maximum flume velocity of 0.46 m·s−1, except for one hardhead that impinged on the rear fish screen. Fish swam faster in the flume during the medium and fast intervals than the slow intervals, but fish speeds were similar among the medium and faster intervals, when some fish took cover behind the rock substrate. In comparison with a Brett-type swim-tunnel, fish showed less increase in mean swimming speed as the flume velocity increased. Fish in the flume were able to use the rock substrate as hydraulic cover, decreasing the encountered water velocity, and, presumably, conserving energy.  相似文献   

11.
Knoche M  Peschel S  Hinz M  Bukovac MJ 《Planta》2000,212(1):127-135
Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± 1 °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10−4 m s−1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8–2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ± 0.10 × 10−4 m s−1) to ventral suture (1.32 ± 0.07 × 10−4 m s−1) and to stylar end (2.53 ± 0.17 × 10−4 m s−1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10−4 m s−1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10–39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol−1 for flux and vapour-concentration-based conductance, respectively. Received: 23 March 2000 / Accepted: 28 July 2000  相似文献   

12.
A new ion-selective liquid membrane microelectrode, based on the neutral carrier 1,1′-bis(2,3-naphtho-18-crown-6), is described that shows the dependence of EMF on the activity of divalent putrescine cations a Put, with the linear slope s Put = 26 ± 3 mV/decade (mean ± SD, N = 18), in the range 10−4–10−1 M at 25 ± 1 °C. Values of potentiometric putrescine cation selectivity coefficients of logK Pot Put j (mean ± SD, N) are obtained by the separate solution method for the ions K+ (1.0 ± 0.4, 10), Na+ (−1.2 ± 0.4, 8), Ca2+ (−2.3 ± 0.5, 10) and Mg2+ (−2.5 ± 0.5, 7). The microelectrode can be applied for the direct analysis of the activities of free divalent putrescine cations in the range 5 × 10−4 to 10−1 M in an extracellular ionic environment. Established analytical methods, e.g. high performance liquid chromatography, determine the total concentration of the derivatives of free and bound putrescine. Received: 20 December 1998 / Revised version: 7 May 1999 / Accepted: 27 May 1999  相似文献   

13.
Spatial and temporal interactions among individual members of populations can have direct applications to habitat management of mountain lions (Puma concolor). Our objectives were to evaluate home range overlap and spatial/temporal use of overlap zones (OZ) of mountain lions in Arizona. We incorporated spatial data with genetic analyses to assess relatedness between mountain lions with overlapping home ranges. We recorded the space use patterns of 29 radio-collared mountain lions in Arizona from August 2005 to August 2008. We genotyped 28 mountain lions and estimated the degree of relatedness among individuals. For 26 pairs of temporally overlapping mountain lions, 18 overlapped spatially and temporally and eight had corresponding genetic information. Home range overlap ranged from 1.18% to 46.38% ( [`(x)] = \text24.\text43 \overline x = {\text{24}}.{\text{43}} , SE = 2.96). Male–male pairs were located within 1 km of each other on average, 0.04% of the time, whereas male–female pairs on average were 3.0%. Two male–male pairs exhibited symmetrical spatial avoidance and two symmetrical spatial attractions to the OZ. We observed simultaneous temporal attraction in three male–male pairs and four male–female pairs. Individuals from Tucson were slightly related to one another within the population (n = 13, mean R = 0.0373 ± 0.0151) whereas lions from Payson (n = 6, mean R = −0.0079 ± 0.0356) and Prescott (n = 9, mean R = −0.0242 ± 0.0452) were not as related. Overall, males were less related to other males (n = 20, mean R = −0.0495 ± 0.0161) than females were related to other females (n = 8, mean R = 0.0015 ± 0.0839). Genetic distance was positively correlated with geographic distance (r 2 = 0.22, P = 0.001). Spatial requirements and interactions influence social behavior and can play a role in determining population density.  相似文献   

14.
A laboratory study investigated the metabolic physiology, and response to variable periods of water and sodium supply, of two arid-zone rodents, the house mouse (Mus domesticus) and the Lakeland Downs short-tailed mouse (Leggadina lakedownensis) under controlled conditions. Fractional water fluxes for M. domesticus (24 ± 0.8%) were significantly higher than those of L. lakedownensis (17 ± 0.7%) when provided with food ad libitum. In addition, the amount of water produced by M. domesticus and by L. lakedownensis from metabolic processes (1.3 ± 0.4 ml · day−1 and 1.2 ± 0.4 ml · day−1, respectively) was insufficient to provide them with their minimum water requirement (1.4 ± 0.2 ml · day−1 and 2.0 ± 0.3 ml · day−1, respectively). For both species of rodent, evaporative water loss was lowest at 25 °C, but remained significantly higher in M. domesticus (1.1 ± 0.1 mg H2O · g−0.122 · h−1) than in L. lakedownensis (0.6 ± 0.1 mg H2O · g−0.122 · h−1). When deprived of drinking water, mice of both species initially lost body mass, but regained it within 18 days following an increase in the amount of seed consumed. Both species were capable of drinking water of variable saline concentrations up to 1 mol · l−1, and compensated for the increased sodium in the water by excreting more urine to remove the sodium. Basal metabolic rate was significantly higher in M. domesticus (3.3 ± 0.2 mg O2 · g−0.75 · h−1) than in L. lakedownensis (2.5 ± 0.1 mg O2 · g−0.75 · h−1). The study provides good evidence that water flux differences between M. domesticus and L. lakedownensis in the field are due to a requirement for more water in M. domesticus to meet their physiological and metabolic demands. Sodium fluxes were lower than those observed in free-ranging mice, whose relatively high sodium fluxes may reflect sodium associated with available food. Accepted: 16 August 1999  相似文献   

15.
Caffeine complexation by chlorogenic acid (3-caffeoylquinic acid, CAS Number [327-97-9]) in aqueous solution as well as caffeine–chlorogenate complex in freshly prepared coffee brews have been investigated by high-resolution 1H-NMR. Caffeine and chlorogenic acid self-associations have also been studied and self-association constants have been determined resorting to both classical isodesmic model and a recently introduced method of data analysis able to provide also the critical aggregation concentration (cac). Furthermore, caffeine–chlorogenate association constant was measured. For the caffeine, the average value of the self-association constant determined by isodesmic model (K i = 7.6 ± 0.5 M−1) is in good agreement with the average value (K a = 10 ± 1.8 M−1) determined with the method which permits the determination of the cac (8.43 ± 0.05 mM). Chlorogenic acid shows a slight decreased tendency to aggregation with a lower average value of association constants (K i = 2.8 ± 0.6 M−1; K a = 3.4 ± 0.6 M−1) and a critical concentration equal to 24 ± 1 mM. The value of the association constant of the caffeine–chlorogenate complex (30 ± 4 M−1) is compatible with previous studies and within the typical range of reported association constants for other caffeine–polyphenol complexes. Structural features of the complex have also been investigated, and the complex conformation has been rediscussed. Caffeine chemical shifts comparison (monomeric, complexed, coffee brews) clearly indicates a significant amount of caffeine is complexed in beverage real system, being chlorogenate ions the main complexing agents.  相似文献   

16.
Mass changes in female southern elephant seals, sampled sequentially at different points through their annual cycle, were measured at King George Island, South Shetland Islands, during the 1995/1996 and 1996/1997 field seasons. Females weighed after they had given birth showed an increase of 37 ± 36 kg (mean ± SD), which represented 6.2 ± 6.4% in relation to their mass in the first breeding season. During the first aquatic phase, between the end of lactation and the beginning of moult, females gained a mean of 128 ± 35 kg, (n = 18) (2.19 ± 0.65 kg day−1), which represented between 27 and 83% of the mass they had lost during lactation. Nine females followed during moulting showed a mass loss rate of 5.0 ± 0.4 kg day−1, which was half the rate during lactation. Total mass loss during moulting (129 ± 22 kg) was not significantly different from mass gain for the same females between lactation and moult (135 ± 37 kg). Furthermore, at the end of moulting, female mass was not significantly different from the mass at the end of lactation. These masses represented 65 ± 5% and 64 ± 5%, respectively, of their initial mass after parturition. During the second period at sea, from the end of the moult until females hauled out to give birth in the following breeding season, the estimated mass gain was 1.45 ± 0.24 kg day−1 (n = 5), which was not significantly different to the rate of mass gain shown by the same females during the first period at sea (2.26 ± 0.70 kg day−1). Total mass gain during the second aquatic phase (364 ± 63 kg) was not correlated with the mass at the end of moulting, but it was positively related to the mass loss experienced by females from parturition until the end of the moulting period in the first breeding season. Accepted: 5 September 1998  相似文献   

17.
 The present study was undertaken to determine the haematological and cardiovascular status, at rest and during prolonged (1 h) submaximal exercise (approximately 70% of peak oxygen uptake) in a group (n = 12) of chronic coca users after chewing approximately 50 g of coca leaves. The results were compared to those obtained in a group (n = 12) of nonchewers. At rest, coca chewing was accompanied by a significant increase in heart rate [from 60 (SEM 4) TO 76 (SEM 3) beats · min−1], in haematocrit [from 53.2 (SEM 1.2) to 55.6 (SEM 1.1)%] in haemoglobin concentration, and plasma noradrenaline concentration [from 2.8 (SEM 0.4) to 5.0 (SEM 0.5) μmol · l−1]. It was calculated that coca chewing for 1 h resulted in a significant decrease in blood [−4.3 (SEM 2.2)%] and plasma [−8.7 (SEM 1.2)%] volume. During submaximal exercise, coca chewers displayed a significantly higher heart rate and mean arterial blood pressure. The exercise-induced haemoconcentration was blunted in coca chewers compared to nonchewers. It was concluded that the coca-induced fluid shift observed at rest in these coca chewers was not cumulative with that of exercise, and that the hypovolaemia induced by coca chewing at rest compromised circulatory adjustments during exercise. Accepted: 29 October 1996  相似文献   

18.
Copper and other transition metal ions and their complexes are catalysts for the decomposition of nitrosothiols. In this way they catalyze the biological functions of nitrosothiols. The kinetics and mechanism of the reaction of two nitrosothiols, S-nitrosothiolactic acid and S-nitrosoglutathione (GSNO), with copper(I) are reported. The kinetics of the reaction of Cu(MeCN) n + (n=0–3) with the nitrosothiols were studied. The results indicate that Cu+ aq is the active species in the GSNO system, with k(Cu+ aq+GSNO)=(9.4 ±2.0)×107 dm3 mol−1 s−1 . The results also indicate that the Cu(MeCN) n + (n=0–3) complexes react with S-nitrosothiolactic acid. Transient species are formed in these processes. The results suggest that these species contain copper(I) and thiol. The results shed light on the catalytic role of copper complexes in the decomposition of S-nitrosothiols. Received 10 April 1999 / Accepted 17 December 1999  相似文献   

19.
Two species of Antarctic fish were stressed by moving them from seawater at −1 °C to seawater at 10 °C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 ± 54 nmol · l−1 noradrenaline and 263 ± 131 nmol · l−1 adrenaline at 10 min. Plasma noradrenaline concentrations rose to 47 ± 14 nmol · l−1 and adrenaline to 73 ± 28 nmol · l−1 in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the β-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines. Accepted: 22 January 1998  相似文献   

20.
Roughly speaking, restitution is the dependence of recovery time of cardiac electrical activity on heart rate. Increased restitution slope is theorized to be predictive of sudden death after heart injury such as from coronary artery occlusion (ischemia). Adrenaline analogs are known to increase restitution slope in normal hearts, but their effects in failing hearts are unknown. Twenty-six rabbits underwent coronary ligation (n = 15) or sham surgery (n = 11) and implantation of a lead in the heart for recording electrocardiograms. Eight weeks later, unanesthetized rabbits were given 0.25–2.0 ml of 1 μmol/L isoprenaline intravenously, which increased heart rate. Heart rate was quantified by time between QRS peaks (RR) and heart activity duration by R to T peak time (QTp). Ligated rabbits (n = 6) had lower ejection fraction than sham rabbits (n = 7, p < 0.0001) indicative of heart failure, but similar baseline RR (269 ± 15 vs 292 ± 23 ms, p = 0.07), QTp (104 ± 17 vs 91 ± 9 ms, p = 0.1), and isoprenaline-induced minimum RR (204 ± 11 vs 208 ± 6 ms, p = 0.4). The trajectory of QTp vs TQ plots displayed hysteresis and regions of negative slope. The slope of the positive slope region was >1 in ligated rabbits (1.27 ± 0.66) and <1 in sham rabbits (0.35 ± 0.14, p = 0.004). The absolute value of the negative slope was greater in ligated rabbits (− 0.81 ± 0.52 vs − 0.35 ± 0.14, p = 0.04). Isoprenaline increased heart rate and slopes of restitution trajectory in failing hearts. The dynamics of restitution trajectory may hold clues for sudden death in heart failure patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号