首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-stranded 6.6-kb DNA molecule complexed with protein was recovered from the supernatant of Clostridium acetobutylicum NCIB 6444. Electron microscopic examination of the DNA-protein complex revealed the presence of a filamentous viruslike particle, which was designated CAK1. The possible double-stranded plasmidlike replicative form and the single-stranded prophage were also recovered from the cell culture following alkaline lysis. CAK1 was released from the C. acetobutylicum cell culture in the absence of cell lysis. Polyethylene glycol-NaCl coprecipitation of the DNA-protein complex revealed the presence of single-stranded DNA complexed with protein in a manner rendering the DNA resistant to Bal 31 exonuclease. Proteinase treatment of CsCl density gradient-purified CAK1 resulted in recovery of DNase-sensitive single-stranded DNA. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis of CAK1 demonstrated the presence of a 5-kDa major coat protein. Hybridization data indicated that the single-stranded DNA from CAK1 has homology with the M13 phage of Escherichia coli. An examination of various physical properties of CAK1 suggests that it is similar to the filamentous phage recovered from gram-negative microorganisms. Although infectivity or inducibility of CAK1 could not be demonstrated, to our knowledge this represents the first report of a nonlytic filamentous viruslike particle containing single-stranded DNA being recovered from a gram-positive bacterium.  相似文献   

2.
Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.  相似文献   

3.
Radioactive DNA was prepared in extensive (4 h) Dane particle DNA polymerase reactions. In different experiments the amount of new DNA, determined by the amount of nucleotide incorporation into an acid-insoluble form, was between 29 and 45% of the total circular DNA isolated from Dane particle preparations after the reaction. DNA reassociation kinetics were used to determine the complexity of the newly synthesized DNA. In different experiments COt1/2 values, corresponding to between 625 and 1,250 nucleotide pairs, were obtained for the radioactive Dane particle DNA. These results suggest that a unique region (or regions), corresponsing to approximately one-fourth to one-half of the circular Dane particle DNA template, was copied one time during the reaction. DNA and RNA extracted from hepatitis B virus-infected liver but not from uninfected liver accelerated the rate of reassociation of radioactive DNA from Dane particles. These Dane particle DNA base sequences were found in alkali-stable, rapidly sedimenting DNA from infected liver as well as in DNA sedimenting at a rate similar to the DNA extracted from Dane particles. These findings are consistent with Dane particle DNA being hepatitis B virus DNA that is integrated into high-molecular-weight cellular DNA and transcribed into RNA in infected liver.  相似文献   

4.
5.
Thermal transition of core particle which occurs before melting of DNA and can be followed by circular dichroism is not a two-state process; it is the result of two processes which cannot be dissociated in static experiments: unfolding of core particles is immediately followed by their aggregation. It is thus impossible to get thermodynamic parameters of core particle unfolding from its thermal transition monitored by circular dichroism. Thermal denaturation kinetics of core particles gives some information about their stability. Finally core particle structure is more stable in chromatin than in its isolated state.  相似文献   

6.
DNA of a Human Hepatitis B Virus Candidate   总被引:41,自引:23,他引:18       下载免费PDF全文
Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 mum in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-mum circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 mum, in addition to the 0.78-mum circles were found. These results suggest that the 0.78-mum circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 +/- 0.09 mum which would correspond to a molecular weight of around 1.6 x 10(6). The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%.  相似文献   

7.
X double-stranded RNA (dsRNA) is a 0.52-kilobase dsRNA molecule that arose spontaneously in a nonkiller strain of Saccharomyces cerevisiae originally containing L-A and L-BC dsRNAs (L-BC is the same size as L-A but shares no homology with it). X hybridized with L-A, and direct RNA sequencing of X showed that the first 5' 25 base pairs (of the X positive strand) and at least the last 110 base pairs of the 3' end were identical to the ends of L-A dsRNA. X showed cytoplasmic inheritance and, like M1, was dependent on L-A for its maintenance. X was encapsidated in viruslike particles whose major coat protein was provided by L-A (as is true for M1), and X was found in viruslike particles with one to eight X molecules per particle. This finding confirms our "head-full replication" model originally proposed for M1 and M2. Like M1 or M2, X lowers the copy number of L-A, especially in a ski host. Surprisingly, X requires many chromosomal MAK genes that are necessary for M1 but not for L-A.  相似文献   

8.
9.
Capsids of polyomaviruses--small, nonenveloped DNA viruses--consist of the major structural protein VP1 and the minor structural proteins VP2 and VP3. The contributions of the individual capsid proteins to functions of the viral particle, such as DNA encapsidation, cell receptor attachment, entry, and uncoating, are still not clear. Here we show that viruslike particles assembled in nuclei of insect cells from VP1 of the monkey B-lymphotropic papovavirus (LPV) are sufficient to unspecifically encapsidate DNA. LPV VP1 expressed in large amounts in insect cells by a baculovirus vector assembled spontaneously in the nuclei to form viruslike particles. After metrizamide equilibrium density gradient purification and nuclease digestion, a fraction of these particles was shown to contain VP1-associated linear, double-stranded DNA with a predominant size of 4.5 kb. The fraction of DNA-containing VP1 particles increased with time and dose of baculovirus vector infection. The DNA-containing particles, further purified by sucrose gradient centrifugation, appeared as "full" particles in negative-staining electron microscopy. As shown by DNA hybridization, the encapsidated DNA consisted of insect cell and baculoviral sequences with no apparent strong homology to LPV sequences. Three non-LPV VP1-derived host proteins with apparent molecular masses of approximately 14, 15, and 16 kDa copurified with the DNA-containing particles and may represent insect cell histones encapsidated together with the DNA. A similar species of host DNA was also found in purified LPV wild-type virions. These data suggest that LPV VP1 alone can be sufficient to encapsidate linear DNA in a sequence-independent manner.  相似文献   

10.
We describe the first virus-like particle of a hyperthermophilic euryarchaeote which was discovered in a strain of "Pyrococcus abyssi" previously characterized in our laboratory. This particle, named PAV1, is lemon-shaped (120 nm x 80 nm), with a short tail terminated by fibers, and resembles the virus SSV1, the type member of the Fuselloviridae, isolated from Sulfolobus shibatae. Sensitivity of the virus-like particle to organic solvents and detergents suggested that the envelope of PAV1 may contain lipids in addition to proteins. It contains a double-stranded circular DNA of 18 kb which is also present in high copy number in a free form in the host cytoplasm. No integrated form of the PAV1 genome could be detected in the host chromosome. Under standard growth conditions, the host cells continuously release PAV1 particles into the culture supernatant without spontaneous lysis, with a maximum reached in the late stationary phase. UV, gamma irradiation, treatment with mitomycin C, and various physiological stresses had no effect on PAV1 production. Screening of a large number of Thermococcales isolates did not permit to find a sensitive host. These results suggest that PAV1 persists in the host strain in a stable carrier state rather than a prophage.  相似文献   

11.
A bacteriophage-plasmid hybrid (phagemid) designated pCAK1 was constructed by ligating 5-kbp Escherichia coli plasmid pAK102 (AprEmr) and the 6.6-kbp HaeIII-linearized replicative form of the CAK1 viruslike particle from Clostridium acetobutylicum NCIB 6444. Phagemid pCAK1 (11.6 kbp) replicated via the ColE1 replication origin derived from pAK102 in E. coli. Single-stranded DNA (ssDNA) molecules complexed with protein in a manner which protected ssDNA from nucleases were recovered from the supernatant of E. coli DH11S transformants containing pCAK1 in the absence of cell lysis. This suggests that the viral-strand DNA synthesis replication origin of CAK1 and associated gene expression are functional in E. coli DH11S. The single-stranded form of pCAK1 isolated from E. coli supernatant was transformed into E. coli DH5 alpha' or DH11S by electroporation. Isolation of ampicillin-resistant E. coli transformants following transformation suggests that the complementary-strand DNA synthesis replication origin of CAK1 is also functional in E. coli. The coat proteins associated with ssDNA of pCAK1 demonstrated sensitivity to proteinase K and various solvents (i.e., phenol and chloroform), similar to the results obtained previously with CAK1. Following phagemid construction in E. coli, pCAK1 was transformed into C. acetobutylicum ATCC 824 and C. perfringens 13 by intact cell electroporation. Restriction enzyme analysis of pCAK1 isolated from erythromycin-resistant transformants of both C. acetobutylicum and C. perfringens suggested that it was identical to that present in E. coli transformants.  相似文献   

12.
13.
14.
Mutants of Methanococcus voltae were isolated that were resistant to the coenzyme M (CoM; 2-mercaptoethanesulfonic acid) analog 2-bromoethanesulfonic acid (BES). The mutants displayed a reduced ability to accumulate [35S]BES relative to the sensitive parental strain. BES inhibited methane production from CH3-S-CoM in cell extracts prepared from wild-type sensitive or resistant strains. BES uptake required the presence of both CO2 and H2 and was inhibited by N-ethylmaleimide and several reagents that are known to disrupt energy metabolism. The mutants showed normal uptake of isoleucine and were not cross-resistant to either azaserine or 5-methyltryptophan and, thus, were neither defective in general energy-dependent substrate transport nor envelope permeability. Both HS-CoM and CH3-S-CoM prevented the uptake of BES and protected cells from inhibition by it. We propose that M. voltae has an energy-dependent, carrier-mediated uptake system for HS-CoM and CH3-S-CoM which can also mediate uptake of BES.  相似文献   

15.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

16.
Specific folding and contraction of DNA by histones H3 and H4.   总被引:26,自引:0,他引:26  
M Bina-Stein  R T Simpson 《Cell》1977,11(3):609-618
We demonstrate that the arginine-rich histones H3 and H4 can introduce torsional constraints on closed circular DNA with a concomitant compaction of the nucleic acid. SV40 DNA I complexed with H3 and H4 appears relaxed in electron micrographs and contains particles of 75 +/- 10 A in diameter along the DNA. SV40 DNA I is contracted 2.75 +/- 0.25 fold by all the four smaller histones and 2.6 +/- 0.4 fold by H3 and H4 alone. The arginine-rich histones can cause the topological equivalent of unwinding the DNA close to one Watson-Crick turn per particle formed. Spherical nucleoprotein complexes morphologically similar to isolated nu bodies or nucleosomes are obtained by association of H3 and H4 with 140 base pair length DNA isolated from chromatin core particles. These reconstituted particles sediment at 9.8S, as compared to 10.8S for native core particles, and contain a tetramer of the arginine-rich histones. None of these specific alterations in DNA structure is seen om complexing the slightly lysine rich-histones H2A and H2B to DNA. Our data provide further evidence indicating that the arginine-rich histones are the major determinants of the architecture of DNA within the chromatin core particle.  相似文献   

17.
It was shown that total DNA of the blue-green algae A. variabilis can be isolated as a compact particle with the sedimentation constant of 2700--2900S by lysis of the cells with the TritonX-100--sodium deoxycholate mixture in 1.0 M NaCl. The structure isolated is sensitive to ribonuclease and the hydrodynamic shift. It was found that within a compact chromosome A. variabilis DNA is circular and negatively superhelicized. The density of superturns of the DNA in 0,2 M NaCl at 20 degrees C is 0,061, which corresponds to one negative turn per 165 pairs of DNA bases.  相似文献   

18.
DNA derived from the methanogenic archaebacterium Methanococcus voltae was digested with PstI restriction endonuclease and cloned into the PstI site of pBR322. The recombinant plasmids generated were used to transform a multiply auxotrophic strain of Escherichia coli with selection for tetracycline resistance. Plasmids complementing the argG(pAW1) or hisA(pAW2) mutations were isolated and characterized. Nick-translated pAW1 and pAW2 hybridized to the predicted M. voltae PstI fragments but not to digested E. coli DNA. A novel 55,000-dalton protein was synthesized in UV-irradiated cells by pAW1, whereas pAW2 synthesized a novel 26,000-dalton protein. Derivatives of pAW1 carrying insertion elements no longer complemented the argG mutation and failed to produce the 55,000-dalton protein. When an AccI fragment was deleted from pAW2, complementation of hisA did not occur and no 26,000-dalton protein was synthesized. The effect of orientation of the cloned DNA within the vector on complementation and polypeptide synthesis was examined.  相似文献   

19.
The interaction of different histone oligomers with nucleosomes has been investigated by using nondenaturing gel electrophoresis. In the presence of 0.2 M NaCl, the addition of the pairs H2A,H2B or H3,H4 or the four core histones to nucleosome core particles produces a decrease in the intensity of the core particle band and the appearance of aggregated material at the top of the gel, indicating that all these histone oligomers are able to associate with nucleosomes. Equivalent results were obtained by using oligonucleosome core particles. Additional electrophoretic results, together with second-dimension analysis of histone composition and fluorescence and solubility studies, indicate that H2A,H2B, H3,H4, and the four core histones can migrate spontaneously from the aggregated nucleosomes containing excess histones to free core DNA. In all cases the estimated yield of histone transfer is very high. Furthermore, the results obtained from electron microscopy, solubility, and supercoiling assays demonstrate the transfer of excess histones from oligonucleosomes to free circular DNA. However, the extent of solubilization obtained in this case is lower than that observed with core DNA as histone acceptor. Our results demonstrate that nucleosome core particles can be formed in 0.2 M NaCl by the following mechanisms: (1) transfer of excess core histones from oligonucleosomes of free DNA, (2) transfer to excess H2A,H2B and H3,H4 associated separately with oligonucleosomes to free DNA, (3) transfer to excess H2A,H2B initially associated with oligonucleosomes to DNA, followed by the reaction of the resulting DNA-(H2A,H2B) complex with oligonucleosomes containing excess H3,H4, and (4) a two-step transfer reaction similar to that indicated in (3), in which excess histones H3,H4 are transferred to DNA before the reaction with oligonucleosomes containing excess H2A,H2B. The possible biological implications of these spontaneous reactions are discussed in the context of the present knowledge of the nucleosome function.  相似文献   

20.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号