首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively, and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75–80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe. PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylgycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.  相似文献   

2.
Phospholipase A2 added directly to superfused [3H]norepinephrine-labeled synaptosomes could cause the release of neurotransmitter molecules. Chloroquine and quinacrine, which block the action of phospholipase A2, inhibited either the phospholipase A2-stimulated or the high potassium-stimulated release of [3H]norepinephrine from synaptosomes. Only quinacrine blocked the high potassium-stimulated influx of Ca2+. It appears that during stimulation of synaptosomes, Ca2+ influx leads to the activation of phospholipase A2, which in turn, hydrolyzes membrane phospholipids in situ. The formation of lysophospholipids may alter the microenvironment and the physicochemical properties of membranes, resulting in the release of neurotransmitter through exocytosis.  相似文献   

3.
In neuroblastoma × glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP, was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10–30 s of stimulation with 10−6 M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not allow the time-course for PIP2 hydrolysis. A reduced labelling of [23P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.  相似文献   

4.
The mechanisms of cholinergic stimulation of gastrin cells were studied in the rat pancreatic cell line B6 RIN. Carbachol induced an increase in intracellular Ca2+ and stimulated gastrin release in a dose-dependent manner over the range 10−5-10−3 M. These effects were completely abolished by atropine, suggesting the implication of muscarinic cholinergic receptors. The binding properties of these receptors were investigated. [N-Methyl-3H]scopolamine ([3h]nms) binding on cell homogenates was time-dependent, saturable and consistent with a single high-affinity binding class (Kd = 39.5 pM, and Bmax = 7.9 fmol/mg DNA). Carbachol competitively inhibited [3H]NMS binding. The potency of inhibition of [3H]NMS binding by subtype selective antagonists was hexahydrodifenidol> pirenzepine> AF-DX 116. These results suggest the M3, muscarinic receptors may be involved in the carbachol-induced gastrin release from B6 RIN cells.  相似文献   

5.
The stimulation of phospholipase D (PLD) activity by endothelin-1 (ET1) was investigated in rabbit iris sphincter perlabelled with [3H]myristic acid. In the presence of 0.5% ethanol, ET1 caused a time- and dose-dependent increase in the production of [3H]phophatidylethanol ([3H]PEt). Within 30 s the peptide increased PEt formation by 30% and after 5 min increased it by 140%. The 50 value for ET1-stimulated PEt formation was found to be 30 nM. This value is appreciably lower than the 50 we previously obtained for ET1-induced inositol triphosphate production (45 nM), but considerably higher than that for arachidonic acid release (1 nM). PEt formation was significantly stimulated by prostaglandin F20, phorbol 12,13-dibutyrate (PDBu), chloroform, A23187 and A1F4, but it was not affected by carbachol or the platelet-activating factor. PDBu-stimulated PEt formation was blocked by staurosporine and it was not potentiated by A23187. Staurosporine had no effect on ET1-stimulated PEt formation. Our data indicate that ET1 stimulation of PLD occurs independently of protein kinase C activation, phospholipase C activation and intracellular Ca2+ mobilization, and phospholipase A2 activation. In this tissue the ET1 receptor is probably coupled to the three phospholipases through several G-proteins, and this appears to be species and receptor type specific.  相似文献   

6.
Release of [3H]dopamine ([3H]DA) from rat striatal slices kept under hypoxic or/and glucose-free conditions was measured using a microvolume perfusion method. The corresponding changes in nucleotide content were determined by reverse-phase high-performance liquid chromatography (RPHPLC). The resting release of [3H]DA was not affected by hypoxia, but under glucose-free conditions massive [Ca2+]0-independent release of [3H]DA was observed. Hypoxia reduced the energy charge (E.C.) and the total purine content from 19.36 ± 4.15 to 6.98 ± 1.83 mol/mg protein. Glucose deprivation by itself, or in combination with hypoxia, markedly reduced the levels of adenosine 5′-triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The E.C. under glucose-free conditions was significantly reduced from 0.73 ± 0.04 to 0.44 ± 0.20. When the tissue was exposed to hypoxic and glucose-free conditions for 18 min the level of ATP was reduced to 3.15 ± 0.11 mol/mg protein. However, when the exposure time was 30 min the ATP level was further reduced to 1.11 ± 0.37 nmol/mg protein. The resting release was enhanced in a [Ca2+]0-independent manner, but there was no release in response to stimulation, and tetrodotoxin did not affect the enhanced resting release, indicating that the release was not associated with axonal activity. Similarly, 50 μM ouabain, inhibitor of Na+/K+-activated ATPase, enhanced the release of [3H]DA at rest in a [Ca2+]0-independent manner. It seems very likely that the reduced ATP level under glucose-free conditions leads to an inhibition of the activity of Na+/K+-ATPase that results in reversal of the uptake processes and in [Ca2+]0-independent [3H]DA release from the axon terminals.  相似文献   

7.
Age-related alterations in major neurotransmitter receptors and voltage dependent calcium channels were analyzed by receptor autoradiography in the gerbil brain. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA), [3H]muscimol, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 were used to label muscarinic acetylcholine receptors, adenosine A1 receptors, γ-aminobutyric acidA (GABAA) receptors, (NMDA) receptors, dopamine D1 receptors, opioid receptors, and voltage dependent calcium channels, respectively. In middle-aged gerbils (16 months old), the hippocampus exhibited a significant elevation in [3H]QNB, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 binding, whereas [3H]CHA and [3H]muscimol binding showed a significant reduction in this area, compared with that of young animals (1 month). On the other hand, the cerebellum showed a significant alteration in [3H]QNB, [3H]CHA, and [3H]naloxone binding and the striatum also exhibited a significant alteration in [3H]SCH 23390 and [3H]CHA binding in middle-aged gerbils. The neocortex showed a significant elevation only in [3H]CHA binding in middle-aged animals. The nucleus accumbens and thalamus also showed a significant alteration only in [3H]muscimol binding. However, the hypothalamus and substantia nigra exhibited no significant alteration in these bindings in middle-aged gerbils. These results demonstrate the age-related alterations of various neurotransmitter receptors and voltage dependent calcium channels in most brain regions. Furthermore, they suggest that the hippocampus is most susceptible to aging processes and is altered at an early stage of senescence.  相似文献   

8.
[3H]Lysergic acid diethylamide (LSD) in the presence of 40 nM ketanserin labeled the 5-HT1A receptor subtype in rat hippocampal membranes. In the presence of guanosine triphosphate (GTP), the Bmax and affinity of [3H]LSD binding to the 5-HT1A binding site were significantly decreased. [3H]LSD in the presence of 40 nM WB4101 labeled the 5-HT2 receptor subtype in homogenates of rat frontal cortex. In contrast to the effect on [3H]LSD binding to the 5-HT1A binding site, GTP produced no significant effect on either the Bmax or the KD of [3H]LSD binding to the 5-HT2 binding site. Competition of 5-HT for [3H]LSD binding to the 5-HT2 binding site was best described by a computer-derived model assuming two binding sites. In the presence of GTP, the 5-HT competition curve was shifted significantly to the right with an approx. 3-fold increase in the IC50. These binding characteristics are consistent with [3H]LSD acting as an antagonist at the 5-HT2 receptor which has multiple affinity states for agonists and is coupled to a guanine nucleotide regulatory subunit. Thus, [3H]LSD has binding characteristics consistent with it acting as an agonist at the 5-HT1A receptor subtype but as an antagonist at the 5-HT2 receptor subtype in rat brain.  相似文献   

9.
Excessive generation of reactive oxygen species (ROS) in the central nervous system (CNS) is a leading cause of neuronal injury. Despite yet unknown mechanisms, oxidant compounds such as H2O2 have been shown to stimulate the release of arachidonic acid (AA) in a number of cell systems. In this study, H2O2 and menadione, a compound known to release H2O2 intracellularly, were used to examine the phospholipases A2 (PLA2) responsible for AA release from primary murine astrocytes. Both H2O2 and menadione dose-dependently stimulated AA release, and the release mediated by H2O2 was completely inhibited by catalase. H2O2 also stimulated phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A2 (cPLA2). However, complete inhibition of cPLA2 phosphorylation by U0126, an inhibitor for mitogen-activated protein kinase kinase (MEK) and GF109203x, a nonselective PKC inhibitor preferring the conventional and novel isoforms, only reduced H2O2-stimulated AA release by 50%. MAFP, a selective, active, site-directed, irreversible inhibitor of both cPLA2 and the Ca2+-independent iPLA2, nearly completely inhibited H2O2-mediated AA release; but, HELSS, a potent irreversible inhibitor of iPLA2, only inhibited H2O2-mediated AA release by 40%. Along with the observation that H2O2-mediated AA release was only partially inhibited upon chelating intracellular Ca2+ by BAPTA, these results indicate the involvement of both cPLA2 and iPLA2 in H2O2-mediated AA release in murine astrocytes.  相似文献   

10.
Purified synaptic vesicles were isolated from hog cerebral cortex by a rapid procedure consisting of homogenization of cerebral cortex slices in iso-osmotic sucrose, differential centrifugation and sucrose density-gradient centrifugation. The purity of the vesicles was evaluated both biochemically and morphologically. The vesicles contained high amounts of γ-aminobutyrate (GABA) and acetylcholine at specific concentrations of 390 nmol/mg protein and 7.2 nmol/mg protein respectively.

Glutamate decarboxylase, the enzyme which catalyses GABA formation, binds to the synaptic vesicles in a calcium-dependent manner. The percentage of glutamate decarboxylase bound to the vesicles increases from about 5% without calcium, reaching a plateau of about 60% at 4 mM Ca2+. Magnesium in concentrations 0.2–10 mM has no significant effect on glutamate decarboxylase binding. Also in phospholipid vesicles (small unilamellar phosphatidylserine-phosphatidylcholine. 2:1 liposomes) Ca2+, but not Mg2+, induced the binding of glutamate decarboxylase, reaching a plateau of 50% at 2 mM Ca2+. Both in synaptic vesicles and in phospholipid vesicles the calcium-dependent glutamate decarboxylase binding seems to be specific, and not caused by unspecific association of proteins, since the specific binding (bound enzyme activity/mg bound protein) increases 3-fold from 0 to 4 mM Ca2+.

The functional role of this binding was studied in GAD containing vesicles by measuring the relationship between the accumulation of [3H]GABA, newly synthetized from [3H]glutamate, and the uptake of added [14C]GABA. No significant uptake of [14C]GABA was found under the experimental conditions used, whereas large amounts of [3H]GABA were found within the vesicles. It appears that the [3H]GABA accumulation process is functionally linked to [3H]GABA synthesis and is mediated by the membrane-bound glutamate decarboxylase. This synthesis-coupled uptake of GABA into synaptic vesicles possibly serves to bring about a plasticity effect in previously stimulated GABAergic nerve endings.  相似文献   


11.
An autoradiographic technique was used to study the distribution of changes in pulmonary NK1 and NK2 receptors in guinea pig lung after repeated antigen challenge. Specific labeling of [3H] CP96345 (NK1 receptors) and [3H] SR48968 (NK2 receptors) was localized over the tracheal and bronchial smooth muscle; the density of binding increased towards smaller airways with a higher density for [3H] CP96345 binding. Bronchial epithelium and pulmonary blood vessels were also labeled densely with [3H] CP96345. No remarkable difference in the pattern of distribution of pulmonary NK1 and NK2 tachykinin receptors was observed between control, vehicle-challenged, and repeatedly antigen-challenged (weekly for three times) guinea pigs. A significant reduction in specific labeling of [3H] CP96345 (p < 0.01) and [3H] SR48968 (p < 0.05) over pulmonary structures was observed in antigen-challenged compared to control or vehicle-challenged animals. This study provides evidence that NK1 and NK2 tachykinin receptors are both localized to smooth muscle of all sizes in guinea pig airways and provides further evidence for a discrete distribution of NK1 and NK2 tachykinin receptors, consistent with their relative functional activities. In a established model of airway inflammation a decrease in the expression of NK1 and NK2 tachykinin receptors was evident on several different cell types within the lung, and this could influence airway and vascular reactivity.  相似文献   

12.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   

13.
Growth plate chondrocytes from both male and female rats have nuclear receptors for 17β-estradiol (E2); however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the female cell response. E2 directly affects the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E2 activates PKC in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E2-dependent alkaline phosphatase activity in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of this study were: (1) to examine if PKC mediates the effect of E2 on chondrocyte proliferation, differentiation, and matrix synthesis; and (2) to determine the pathway that mediates the membrane effect of E2 on PKC. Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10−10 to 10−7 M E2 in the presence or absence of the PKC inhibitor chelerythrine, and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [3H]thymidine incorporation were measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E2 in the presence or absence of genistein (an inhibitor of tyrosine kinases), U73122 or D609 (inhibitors of phospholipase C [PLC]), quinacrine (an inhibitor of phospholipase A2 [PLA2]), and melittin (an activator of PLA2). Alkaline phosphatase specific activity and proteoglycan sulfation were increased and [3H]thymidine incorporation was decreased by E2. The effects of E2 on all parameters were blocked by chelerythrine. Treatment of the cultures with E2 produced a significant dose-dependent increase in PKC. U73122 dose-dependently inhibited the activation of PKC in E2-stimulated female chondrocyte cultures. However, the classical receptor antagonist ICI 182780 was unable to block the stimulatory effect of E2 on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E2. Inhibition of tyrosine kinase and PLA2 had no effect on the activation of PKC by E2. The PLA2 activator also had no effect on PKC activation by E2. E2 stimulated PKC activity in membranes isolated from the chondrocytes, demonstrating a direct membrane effect for this steroid hormone. These data indicate that the rapid nongenomic effect of E2 on PKC activity in chondrocytes from female rats is sex-specific and dependent upon a G-protein-coupled phospholipase C.  相似文献   

14.
WAY–100635 is the first selective, silent 5–HT1A (5-hydroxytryptamine1A, serotonin-1A) receptor antagonist. We have investigated the use of [3H]WAY–100635 as a quantitative autoradiographic ligand in post-mortem human hippocampus, raphe and four cortical regions, and compared it with the 5–HT1A receptor agonist, [3H]8–OH–DPAT. Saturation studies showed an average Kd for [3H]WAY–100635 binding in hippocampus of 1.1 nM. The regional and laminar distributions of [3H]WAY–100635 binding and [3H]8–OH–DPAT binding were similar. The density of [3H]WAY–100635 binding sites was 60–70% more than that of [3H]8–OH–DPAT in all areas examined except the cingulate gyrus where it was 165% higher. [3H]WAY–100635 binding was robust and was not affected by the post-mortem interval, freezer storage time or brain pH (agonal state). Using [3H]WAY–100635, we confirmed an increase of 5–HT1A receptor binding sites in the frontal cortex in schizophrenia, previously demonstrated with [3H]8–OH–DPAT. Compared to [3H]8–OH–DPAT, [3H]WAY–100635 has two advantages: it has a higher selectivity and affinity for the 5–HT1A receptor, and it recognizes 5–HT1A receptors whether or not they are coupled to a G-protein, whereas [3H]8–OH–DPAT primarily detects coupled receptors. Given these considerations, the [3H]WAY–100635 binding data in schizophrenia clarify two points. First, they indicate that the elevated [3H]8–OH–DPAT binding seen in the same cases is attributable to an increase of 5–HT1A receptors rather than any other binding site. Second, the enhanced [3H]8–OH–DPAT binding in schizophrenia reflects an increased density of 5–HT1A receptors, not an increased percentage of 5–HT1A receptors which are G-protein-coupled. We conclude that [3H]WAY–100635 is a valuable autoradiographic ligand for the qualitative and quantitative study of 5–HT1A receptors in the human brain.  相似文献   

15.
Prostaglandin (PG) and thromboxane B2 (TXB2) biosynthesis was studied in cultured astrocytes from neonatal rat brain hemispheres. After two weeks of cultivation, prostanoids were formed with the spectrum: PGD2 > TXB2 > PGF2 > PGE2, as measured by specific radioimmunoassays. Under basal conditions PGD2 biosynthesis (9.55 ng/mg protein/15 min) was in the same order of magnitude as the sum of the other prostanoids. The formation of prostanoids was stimulated in a concentration dependent manner (up to 6–10 fold) by the calcium ionophore A 23187 (0.01–10 μM) as well as by melittin (0.01–5 μg/ml), phospholipase A2 (10–40 U/ml) and phospholipase C (0.01–1 U/ml). Basal and evoked PG and TXB2 biosynthesis depended on the availability of Ca2+, as demonstrated in Ca2+ free incubation medium containing Na2EDTA (1 μM), or with verapamil (100 μM) and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)-octylester-HCl (TMB-8, 1–100 μM). Indomethacin (10 μM), mepacrine (100 μM) and p-bromophenacylbromide (50 μ M) inhibited basal and evoked PG formation. Thin-layer chromatography (TLC) detection after incubation of the cells with [3H]arachidonic acid (1 μCi/ml, for 60 min) confirmed the results obtained by radioimmunoassay. Incubation of [3H]arachidonic acid labelled cells with inonophore or phospholipases, followed by lipid extraction and TLC, showed that A 23187 liberated [3H]arachidonic acid predominantly from phosphatidylethanolamine, whereas phospholipase A2 and C reduced mainly the labelling of the phosphatidyl-inositol/-choline fraction. Potassium depolarization of the cells did not enhance prostanoid formation. Similarly, drugs with affinity to - or β-adrenoceptors, or to dopamine-, 5-hydroxytryptamine-, muscarine-, histamine-, glutamate-, aspartate-, GABA, adenosine- and opioid-receptors failed to stimulate prostanoid biosynthesis. Also compounds like angiotensin, bradykinin and thrombin were ineffective in this respect.

In conclusion, our results confirm that cultured astrocytes possess the complete pattern of enzymes necessary for prostanoid formation and hence might play a crucial role in brain prostanoid biosynthesis. Stimulation of prostanoid biosynthesis involves Ca2+-dependent activation of phospholipase A2, cyclooxygenase reaction and further PG metabolism. However, the endogenous stimulus for enhanced prostanoid synthesis in the brain still has to be established.  相似文献   


16.
High affinity, specific [3H]5-hydroxytryptamine (5-HT) binding to spinal cord synaptosomes was examined to identify the 5-HT receptor subtypes present. Computer nonlinear regression analysis of competition studies employing 8-OH-DPAT indicated that this 5-HT1A selective agonist demonstrated high affinity competition (Ki = 1.3 nM) for 24.6 ± 0.7% of the total [3H]5-HT binding sites. Competition studies employing the 5-HT1B selective agonist RU24969, in the presence of 100 nM 8-OH-DPAT, indicated that RU24969 demonstrated high affinity (Ki = 1.1 nM) competitive inhibition for 26.2 ± 1.4% of all [3H]5-HT binding sites. Neither 5-HT1C, 5-HT1D, 5-HT2 nor 5-HT3 selective compounds demonstrated any high affinity competition for the residual 49% of specific [3H]5-HT binding. Therefore, three major classes of [3H]5-HT binding sites could be demonstrated in spinal cord synaptosomes: 5-HT1A, 5-HT1B and a novel [3H]5-HT binding site which respectively represented 25, 26 and 49% of spinal cord synaptosomal [3H]5-HT binding. Further studies focusing on the function of the latter binding site are needed to determine if the presently identified novel binding site is the major 5-HT1 receptor subtype present in spinal cord.  相似文献   

17.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

18.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

19.
The selective antagonist radioligand [3H]2-propylthioadenosine-5′-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([3H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74 Ci/mmol. In preliminary saturation binding studies, [3H]PSB-0413 showed high affinity for platelet P2Y12 receptors with a KD value of 4.57 nM. Human platelets had a high density of P2Y12 receptors exhibiting a Bmax value of 7.66 pmol/mg of protein.  相似文献   

20.
The present study was undertaken to characterize the binding activities of propiverine and its N-oxide metabolites (1-methyl-4-piperidyl diphenylpropoxyacetate N-oxide: P-4(N → O), 1-methyl-4-piperidyl benzilate N-oxide: DPr-P-4(N → O)) toward L-type calcium channel antagonist receptors in the rat bladder and brain. Propiverine and P-4(N → O) inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder in a concentration-dependent manner. Compared with that for propiverine, the Ki value for P-4(N → O) in the bladder was significantly greater. Scatchard analysis has revealed that propiverine increased significantly Kd values for bladder (+)-[3H]PN 200–110 binding. DPr-P-4(N → O) had little inhibitory effects on the bladder (+)-[3H]PN 200–110 binding. Oxybutynin and N-desethyl-oxybutynin (DEOB) also inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder. Propiverine, oxybutynin and their metabolites inhibited specific [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding in the rat bladder. The ratios of Ki values for (+)-[3H]PN 200–110 to [3H]NMS were markedly smaller for propiverine and P-4(N → O) than oxybutynin and DEOB. Propiverine and P-4(N → O) inhibited specific binding of (+)-[3H]PN 200–110, [3H]diltiazem and [3H]verapamil in the rat cerebral cortex in a concentration-dependent manner. The Ki values of propiverine and P-4(N → O) for [3H]diltiazem were significantly smaller than those for (+)-[3H]PN 200–110 and [3H]verapamil. Further, their Ki values for [3H]verapamil were significantly smaller than those for (+)-[3H]PN 200–110. The Ki values of propiverine for each radioligand in the cerebral cortex were significantly (P < 0.05) smaller than those of P-4(N → O). In conclusion, the present study has shown that propiverine and P-4(N → O) exert a significant binding activity of L-type calcium channel antagonist receptors in the bladder and these effects may be pharmacologically relevant in the treatment of overactive bladder after oral administration of propiverine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号