首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA isolation from dry and fresh samples of polysaccharide-rich plants   总被引:4,自引:0,他引:4  
DNA extraction is difficult in a variety of plants because of the presence of metabolites that interfere with DNA isolation procedures and downstream applications such as DNA restriction, amplification, and cloning. The chemotypic heterogeneity among species may not permit optimal DNA yield with a single protocol; thus, even closely related species may require different isolating protocols. Here we describe a modified procedure based on the hexadecyltrimethylammonium bromide (CTAB) method to isolate DNA from tissues containing high levels of polysaccharides. The procedure is applicable to both dry and fresh tissues and was tested on chickpea seeds, soybean, and wheat leaves. This method solved the problems of DNA degradation, contamination, and low yield due to binding and/or coprecipitation with starches and polysaccharides. The isolated DNA proved amenable to PCR amplification and restriction digestion.  相似文献   

2.
Collagen is the most abundant vertebrate protein and forms a stable fibrous architecture in connective tissues, such as bone, cartilage, skin and tendon. Much recent research has been directed towards an understanding of the molecular and cellular mechanisms involved in the synthesis and degradation of collagen, because a change in the normal balance, or an increased destruction of collagen, can cause loss of function of specialized tissues. This short review attempts to summarize present knowledge about the proteolytic destruction of collagen and the exciting new work on the factors that are emerging as important controlling agents. An understanding of the regulatory processes is yielding some important clues regarding the levels at which they can fail in pathological conditions and we speculate about evolving strategies for preventing uncontrolled resorption.  相似文献   

3.
成体干细胞可塑性的事实、质疑和展望   总被引:1,自引:0,他引:1  
姜铧  张洹 《生命科学》2004,16(1):7-10,34
成体干细胞的可塑性是指存在于成年组织或器官中的不成熟细胞跨胚层分化的一种能力。近年来相关研究很多,有人认为成体干细胞具有可塑性,如造血干细胞可以分化为神经外胚层细胞和内胚层细胞:有人对其持怀疑态度,认为成年造血干细胞发育可塑性证据不足,成体干细胞不能跨胚层分化。由于分离纯化、检测手段等的局限,大多数研究均存在这样或那样的不足和误区,彻底研究清楚还有很长的路要走。  相似文献   

4.
Optical histopathology is fast emerging as a potential tool in cancer diagnosis. Fresh tissues in saline are ideal samples for optical histopathology. However, evaluation of suitability of ex vivo handled tissues is necessitated because of severe constraints in sample procurement, handling, and other associated problems with fresh tissues. Among these methods, formalin-fixed samples are shown to be suitable for optical histopathology. However, it is necessary to further evaluate this method from the point of view discriminating tissues with minute biochemical variations. A pilot Raman and Fourier transform infrared (FTIR) microspectroscopic studies of formalin-fixed tissues normal, malignant, and after-2-fractions of radiotherapy from the same malignant cervix subjects were carried out, with an aim to explore the feasibility of discriminating these tissues, especially the tissues after-2-fractions of radiotherapy from other two groups. Raman and FTIR spectra exhibit large differences for normal and malignant tissues and subtle differences are seen between malignant and after-2-fractions of radiotherapy tissues. Spectral data were analyzed by principal component analysis (PCA) and it provided good discrimination of normal and malignant tissues. PCA of data of three tissues, normal, malignant, and 2-fractions after radiotherapy, gave two clusters corresponding to normal and malignant + after-2-fractions of radiotherapy tissues. A second step of PCA was required to achieve discrimination between malignant and after-2-fractions of radiotherapy tissues. Hence, this study not only further supports the use of formalin-fixed tissues in optical histopathology, especially from Raman spectroscopy point of view, it also indicates feasibility of discriminating tissues with minute biochemical differences such as malignant and after-2-fractions of radiotherapy.  相似文献   

5.
Fresh, functional human tissues have long been considered the closest possible model of human in vivo function and can be used to measure a wide range of pharmacological responses. Despite this, relatively little drug development is conducted using fresh human tissue because of the logistical and ethical difficulties surrounding the availability of tissue and practicalities of experimental work. Most tests of drug activity require a living test system comprising cells, tissues or whole organisms. In some instances, “living” (fresh) human tissues have the potential to reduce or replace animal tests through superior prediction of drug safety and efficacy. Before functional human tissue tests become a routine part of drug development, two factors must co-exist. Firstly, organisations such as Biopta must continue to create compelling evidence that human tissues are more predictive than alternative models; such evidence will drive demand from the pharmaceutical industry for human tissue-based tests. Secondly, the vast number of tissues and organs residual to surgery or unsuitable for transplant must be routinely consented for medical research and made available to all researchers in an equitable and timely manner. This requires a concerted effort throughout the NHS and consistent demand as well as financial support from researchers, particularly within industry. It is our view that the next 5–10 years will generate compelling evidence of the value of functional human tissue-based tests and recognition that more efficient use of residual or non-transplantable tissues and organs is an urgent priority for the development of new medicines.  相似文献   

6.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   

7.
Boron in human and animal nutrition   总被引:9,自引:0,他引:9  
Nielsen  Forrest H. 《Plant and Soil》1997,193(1-2):199-208
This review describes the findings from human and animal studies indicating that B is a dynamic trace element which, in physiological amounts, can affect the metabolism or utilisation of numerous other substances involved in life processes including macrominerals, energy substrates such as triglycerides and glucose, nitrogen containing substances such as amino acids and proteins, reactive oxygen species, and estrogen. Through these effects, B can affect the function or composition of several body systems, including the brain, skeleton and immune system, generally in a beneficial fashion. Moreover, homeostatic mechanisms apparently exist for B because it is rapidly excreted in the urine, does not accumulate in tissues, and is maintained in a relatively narrow range of concentrations in blood of healthy individuals. Thus, even though B has not been conclusively established as essential because a biochemical function for it has not been identified, its beneficial actions suggest that an intake of over 1 mg day-1 (but probably not more than 13 mg day-1) is desirable; diets low in fruits, vegetables, legumes and nuts may not provide this amount of B. Boron may be of more practical nutritional importance than currently acknowledged.  相似文献   

8.
《Genomics》2020,112(5):3157-3165
Identifying genes involved in functional differences between similar tissues from expression profiles is challenging, because the expected differences in expression levels are small. To exemplify this challenge, we studied the expression profiles of two skeletal muscles, deltoid and biceps, in healthy individuals. We provide a series of guides and recommendations for the analysis of this type of studies. These include how to account for batch effects and inter-individual differences to optimize the detection of gene signatures associated with tissue function. We provide guidance on the selection of optimal settings for constructing gene co-expression networks through parameter sweeps of settings and calculation of the overlap with an established knowledge network. Our main recommendation is to use a combination of the data-driven approaches, such as differential gene expression analysis and gene co-expression network analysis, and hypothesis-driven approaches, such as gene set connectivity analysis. Accordingly, we detected differences in metabolic gene expression between deltoid and biceps that were supported by both data- and hypothesis-driven approaches. Finally, we provide a bioinformatic framework that support the biological interpretation of expression profiles from related tissues from this combination of approaches, which is available at github.com/tabbassidaloii/AnalysisFrameworkSimilarTissues.  相似文献   

9.
To understand many aspects of the metabolism of complex plant structures such as leaves, fruit and roots it is important to understand how metabolic processes are compartmentalized between tissues. The aim of this article is to show how immunohistochemistry, in conjunction with biochemical and physiological studies, is useful in understanding both the function of an enzyme in a tissue and metabolic processes occurring in plant tissues. This is illustrated by two examples. Firstly, the use of immunohistochemisty in the localization of amino acids in plant tissues is described. Secondly, the use of immunohistochemistry in understanding the function of an enzyme in a tissue and the metabolic processes occurring within the tissue is described. To illustrate this the example of phosophoenolpyruvate carboxykinase (PEPCK), an enzyme which is present in many plant tissues in which its function is unknown, is used. Evidence is provided that PEPCK may play a role in pH regulation in tissues active in the metabolism of nitrogen.  相似文献   

10.
Internal tissues of multicellular organisms cannot directly be seen because they contain pigments. For this reason, whole‐body clearing methods have been developed and applied to mammals such as mice. Insects such as beetles, however, cannot be cleared by the mammalian method because of pigments such as melanin in their exoskeletons. In this study, we tried to develop a whole‐body clearing method for large beetles. We first bleached the exoskeleton using a hydrogen peroxide treatment, and applied advanced Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis (CUBIC) reagents to make the internal tissues transparent. The combined method of hydrogen peroxide and advanced CUBIC allowed us to successfully undertake whole‐body clearing of large beetles.  相似文献   

11.
During the last decade, embryonic stem cells (ESC) have unleashed new avenues in the field of developmental biology and emerged as a potential tool to understand the molecular mechanisms taking place during the process of differentiation from the embryonic stage to adult phenotype. Their uniqueness lies in retaining the capacity of unlimited proliferation and to differentiate into all somatic cells. Together with promising results from rodent models, ESC has raised great hope among for human ESC-based cell replacement therapy. ESC could potentially revolutionize medicine by providing a powerful and renewable cell source capable of replacing or repairing tissues that have been damaged in almost all degenerative diseases such as Parkinson's disease, myocardial infarction (MI) and diabetes. Somatic stem cells are an attractive option to explore for transplantation because they are autologous, but their differentiation potential is very limited. Currently, the major sources of somatic cells used for basic research and clinical trials come from bone marrow. But their widespread acceptability has not been gained because many of the results are confusing and inconsistent. The focus here is on human embryonic stem cells (hESCs), using methods to induce their differentiation to cardiomyocytes in vitro. Their properties in relation to primary human cardiomyocytes and their ability to integrate into host myocardium have been investigated into how they can enhance cardiac function. However, important aspects of stem cell biology and the transplantation process remain unresolved. In summary, this review updates the recent progress of ES cell research in cell therapy, discusses the problems in the practical utility of ESC, and evaluates how far this adjunctive experimental approach can be successful.  相似文献   

12.
Many vertebrates show seasonality in immune defenses, perhaps because of trade-offs with other physiological processes. Trade-offs between reproduction and immune function have been well studied, but how other life cycle events such as molt affect immune function remains unclear. Here, we hypothesize that one possible explanation is that accumulative dissociated processes (e.g., resource deficits generated over the long term by physiological processes) can have delayed effects on immune activity. To test this hypothesis, we compared cutaneous immune responses in groups of captive female house sparrows (Passer domesticus) photoperiodically induced into six different life cycle stages. We predicted that if delayed trade-offs occur, immune activity would be reduced after a mature life state was reached (e.g., postmolt) and not just compromised when other tissues were actively growing (instantaneous trade-off). We found evidence for both types of trade-offs: immune responses were weakest in sparrows that had just completed postnuptial molt, but they were also weak in birds growing reproductive tissues or feathers. Birds in mature reproductive states or light molt had strong immune responses comparable with birds in a nonbreeding/nonmolting state. Altogether, our results indicate that immune activity in female house sparrows can be influenced by both instantaneous and delayed trade-offs.  相似文献   

13.
上转换发光纳米材料(UCNPs)具有荧光寿命长、潜在生物毒性低、穿透深度大、对生物组织损伤小且几乎没有背景光等显著优点,近年来,在光动力治疗(PDT)、生物成像及生物检测等领域已经得到广泛应用.但在应用的过程中存在一些缺陷,如在PDT中UCNPs与光敏剂之间能量转移效率较低、正常组织过热;在生物成像中,荧光强度较弱、光敏剂和激活剂有能量回流、成像模式单一等问题.科研人员针对上述问题研究出了很多解决的方法,如缩短UCNPs与目标物之间的距离、改变照射激光的强度、改变UCNPs的结构、将UCNPs作为新型多功能平台整合成像与治疗于一体等,使部分问题得到了很好的解决.本文重点综述了UCNPs应用在PDT和生物成像中所出现的问题及解决方法,并对UCNPs在生物医学领域的应用发展趋势进行展望.  相似文献   

14.
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543–553, 2016  相似文献   

15.
NMR spectroscopy as an investigative technique in physiology   总被引:1,自引:0,他引:1  
Relating physiological variables on an organ system level to metabolic function within the intracellular environment has been exceedingly difficult because of a paucity of techniques. Most of the tools at our command necessitate either the removal or destruction of tissues before measurements can be made. Recently, NMR spectroscopy has been applied to several important questions relating organ system and cellular physiology. NMR has the distinct advantage of being noninvasive and nondestructive, allowing the investigator to make repetitive measurements of intracellular variables while manipulating experimental variables that are important on the organ system level. In this review we shall present several examples of such NMR investigations so that the reader will gain some appreciation of the potential of this relatively new technique. Cellular acid-base homeostatic mechanisms, high-energy phosphate metabolism, and regulation of anaerobic glycolysis will be discussed for such diverse cellular populations as mammalian brain, mammalian heart muscle, salamander skeletal muscle, amphibian skin, and invertebrate muscle. In addition, the role of phosphomonoesters and phosphodiesters in lipid metabolism for several tissues in different species will be evaluated.  相似文献   

16.
To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as ‘correlative microscopy’. Correlative imaging allows researchers to gain additional novel structure–function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or ‘combined’) microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.  相似文献   

17.
Wusteman M  Robinson M  Pegg D 《Cryobiology》2004,48(2):179-189
If large pieces of tissue and organs are to be successfully stored at low temperatures, some means must be found to minimize the disruption of extracellular structures by the ice that develops during conventional cryopreservation methods. The use of sufficiently high concentrations of cryoprotectant (CPA) to vitrify rather than freeze the tissue is a possible solution to this problem, and the retention of function of embryos and elastic arteries after vitrification suggests that some cells and tissues at least can withstand exposure to the high concentrations of CPA necessary for this process to occur. There are, however, additional problems in applying vitrifying techniques to bulky tissues and organs. These are related to the additional time required for tissue equilibration of CPA to occur and the consequences for toxic injury, the difficulty in achieving sufficiently rapid and uniform cooling rates to produce the required glassy state, and the even more rapid and uniform warming rates that are necessary to avoid devitrification. Non-uniformity of temperature will increase the risk of mechanical stresses and fractures developing in the glass during rapid warming. This paper reviews possible strategies and the progress that has been made in overcoming these problems. This will include the permeation of CPA mixtures into whole tissues and possibilities for reducing their toxicity by the inclusion of adjuncts such as ice inhibitors and sugars. The warming of tissues by dielectric heating is currently the only practical means by which sufficiently rapid rates can be achieved in bulky tissues given that the tolerable limits of CPA concentration will most likely be insufficient to prevent the development of ice nuclei during cooling. The biological effects of microwaves are reviewed and their effectiveness in producing the required uniformity in warming of tissue models of various shapes are discussed.  相似文献   

18.
Change in metabolic status, defined as a change in the availability of nutrients and energy to the tissues, is a powerful regulator of the reproductive function in small ruminants, especially in genotypes that are not strongly responsive to photoperiod such as the Merino sheep. In this paper, the dynamics of the response of the reproductive axis to changes in metabolic status are reviewed in the light of recent studies. The nature and the roles of the various components of the pathways linking metabolic status to reproduction are considered: nutrients and metabolites, the endocrine system, and the nervous system. We discuss the role of leptin and insulin in detail because of the central role of these two hormones in both the early gonadotrophin response to increase in nutrition and the long-term response of the testis to dietary stimulation. The possible roles of recently identified peptides, such as ghrelin and kisspeptin, are also considered as we develop a general hypothesis that encompasses the different levels of integration necessary to explain the complex interactions between reproductive function and metabolic status, and the possible existence of a "metabolic memory" in this interaction.  相似文献   

19.
The effect of light on animal tissues is ambivalent. Light is necessary for many functions, e.g. for vision and, as in the flagellate halobacterium, to gain energy. But light is potentially dangerous: it is capable of destroying cells or their components by photooxidation, especially in the presence of sensitizing pigments such as haems and cytochromes, which are ubiquitous in aerobic cells. Several different examples are discussed to show how a compromise is achieved in animal tissues that for functional reasons receive high exposure to light. Carotenoid pigments, present in many eyes and photoreceptors, seem especially suited to protect against the deleterious effects of light because they absorb the dangerous short wavelength part of the light spectrum. In plant tissue, carotenoids are also well known to be capable of 'quenching' photoexcited states of sensitizing pigments and of oxygen, a function that they might have also in animal tissue. A consequence of the considerations is that whenever animal tissues are exposed to higher than usual light levels and/or oxygen pressures cellular damage might occur. Examples are discussed; strategies to circumvent the deleterious effects by photooxidation follow directly from the arguments.  相似文献   

20.
Tang BL 《Cellular microbiology》2012,14(9):1354-1363
Chikungunya virus (CHIKV) infection causes a disease which appears to affect multiple cell types and tissues. The acute phase is manifested by a non-fatal febrile illness, polyarthralgia and maculopapular rashes in adults, but with recurrent arthralgia that may linger for months during convalescence. The issue of cellular and tissue tropism of CHIKV has elicited interest primarily because of this lingering incapacitating chronic joint pain, as well as clear encephalopathy in severe cases among neonates during the re-emergence of the virus in recent epidemics. The principle cell types productively infected by CHIKV are skin fibroblasts, epithelial cells and lymphoid tissues. There is controversy as to whether CHIKV productively infects haematopoietic cells and neurones/glia. CHIKV infection triggers rapid and robust innate immune responses which quickly clears the acute phase infection. However, significant acute as well as chronic infection of less obvious cell types, such as monocytes, neurones/glia or even CNS neural progenitors may conceivably occur. There is therefore a need to ascertain the full range potential of CHIKV tropism, fully understand the cellular responses triggered during the acute the convalescent phases, and explore possible cell types that might be the source of chronic problems associated with CHIKV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号