首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of almost all honeyeater nectar sources from a 5.6 ha area during February to July had no apparent effect on honeyeater nesting or total abundance. Behaviour in the experimental area was also generally unaffected except for the extent of nectar-feeding which was significantly reduced for the most commonly observed species. The honeyeaters must have compensated for the nectar removal by flying to nearby productive areas to feed on nectar. Nectar-removal had no significant effect on the species composition of resident honeyeaters but did affect the species composition of all observed honeyeaters. Nectar removal resulted in a decrease in the abundance of the large and dominant Little Wattlebirds (Anthochaera chrysoptera) and an increase in the abundance of the other, smaller species.  相似文献   

2.
Feeding by honeyeaters was found to maintain nectar at low levels at three sites studied on Kangaroo Island in May-June 1978. The productivity of nectar at a site and position in a dominance hierarchy appeared to determine which bird species used each site. Correa was the main nectar source in the poorest area and produced 0.05 kJ m?2 per day. The small eastern spinebill was the most abundant honeyeater. The purple-gaped honeyeater also occurred but fed mostly on honeydew. The medium sized New Holland honeyeater was common and territorial in the second area, where Banksia marginata and B. ornata inflorescences and Adenanthos flowers produced 0.7 kJ m?2 of nectar per day. Spinebills and crescent honeyeaters also visited flowers and were sometimes chased by New Holland honeyeaters. The richest site was a flowering Eucalyptus cosmophylla tree (5.1 kJ m?2 of nectar per day). A red wattlebird, the largest honeyeater, held a territory in part of this tree and chased other honeyeaters from the territory. New Holland, crescent and purple-gaped honeyeaters fed on flowers in other parts of the tree. The spinebill was absent. We conclude that nectar was partitioned along a spectrum of rich to poor sources. Larger more aggressive species used and sometimes defended the richest sources while the smaller birds used the poorer sources.  相似文献   

3.
Abstract

Honeyeaters were the most numerous birds in banksia woodland near Perth, Western Australia, throughout the year. Numbers were greatest in a Banksia littoralis swamp, but only during those few months when it contained large amounts of nectar. In the surrounding woodland, numbers were lower but fairly constant during the year. This reflects the smaller amounts of nectar produced throughout the year, by the overlapping flowering patterns of several Banksia and Adenanthos species.

Large and medium-sized honeyeaters (wattlebirds and New Holland Honeyeaters) and flocking silvereyes dominated the swamp when it flowered. In contrast, small honeyeaters (spinebills and Brown Honeyeaters), many of whom were highly territorial residents, comprised the majority of the woodland assemblage throughout the year. These observations support a model based upon aggressive defence of rich nectar sources by the larger honeyeater species, and more efficient exploitation of dispersed flowers by smaller honeyeaters.  相似文献   

4.
In general, the brown honeyeater, Lichmera indistincta, flies more and expends more energy when visiting flowers in the early morning than at other times. Floral nectar is most abundant early in the day, and nectar energy intake by L. indistincta is greatest at that time. It appears as if birds can only store excess energy during the early part of the day, incurring energy deficits at other times. Unit perching and flight costs are greatest for L. indistincta in winter and spring. As a result, peak total energy expenditures and requirements occur at these times, birds apparently being unable to reduce energy demands by employing nocturnal torpor. Estimates of probable energy uptake by L. indistincta from the plant species studied exceed predicted requirements in all seasons except winter, when it is apparent that birds would need to be especially selective in the plants that they used as major energy sources.  相似文献   

5.
Nectar robbers use a hole made in the perianth to extract nectar. Since robbers may modify plant fitness, they play an important role by driving evolution on floral traits, shaping population structure and influencing community dynamics. Although nectar robbing is widespread in angiosperms, the causes and ecological implications of this behaviour on large ecological scales are still unexplored. Our aim is to study the frequency of nectar robbing in plants of temperate and tropical regions and examine its association with plant traits. We characterised the levels of nectar robbing in 88 species of Mediterranean, Alpine, Antillean and Andean plant communities and identified the most important nectar robbers. We analysed associations between the levels of robbing and floral morphology, production and density of energy rewards, mechanisms of protection against nectar robbers, plant life form and geographic origin. Nectar robbing was present at all sampling sites. Within communities two patterns of robbing levels related to the diversity and specialization of robbers were detected. In most communities one plant species presented very high levels of robbing while other species had intermediate to low robbing levels. There, nectar robbers are opportunists, robbing highly rewarding plants. In the Andean community the high specialization of several co‐existing flowerpiercers produced an even pattern of robbing levels in the plant community. Plants with long flowers, abundant nectar and a high energy density are more likely to be robbed by both insects and birds. A high aggregation of the flowers within the plants and the presence of long calyxes and bracts are associated to low robbing rates by insects and to a lesser extent by birds. Besides the morphological constraints that operate on a single flower basis, nectar robbing is a phenomenon dependent upon the density of energy rewards reflecting the presence of mechanisms on higher ecological scales.  相似文献   

6.
NICK REID 《Austral ecology》1990,15(2):175-190
The mutualism involving mistletoes (Amyema quandangj, spiny-cheeked honeyeaters (Acan-thagenys rufogularis) and mistletoebirds (Dicaeum hirundinaceum) was studied in arid woodland in South Australia between 1980 and 1984. Plants and birds were locally interdependent: mistletoes supplied a continuous resource of fruits or nectar that sustained permanent populations of pollinators (honeyeaters) and dispersers (honeyeaters and mistletoebirds). The reproductive phenology of Amyema quandang was central to the interactions. Amyema quandang flowered in winter and annual fruit crops overlapped so that ripe fruit was continuously available. Spiny-cheeked honeyeaters obtained most of their energy requirements from mistletoe nectar in winter and mistletoe fruit in summer. Higher honeyeater densities were sustained by flowering in winter. Mistletoebirds were present in low density throughout the year and subsisted on a diet of mistletoe fruit and a few insects. The reproductive strategy of A. quandang probably evolved in response to the pollination and dispersal service provided by honeyeaters in inland Australia. Neither spiny-cheeked honeyeaters nor mistletoebirds have adaptations resulting from evolutionary interactions with A. quandang. The high specificity of their mutualism is a result of: (i) the abundance of A. quandang in relation to other nectar and fruit producing plants in the community: (ii) the year-round production by A. quandang of the primary source of fruit or nectar for honeyeaters and mistletoebirds: (iii) the facultative specialization of both birds on A. quandang; and (iv) the reluctance or inability of other frugivorous birds in the community to consume A. quandang fruit.  相似文献   

7.
Nectar-feeding birds are prominent in many parts of the world, and vary with respect to body size. Despite the availability of considerable morphometric data, few concerted efforts have been made to assess the influence of attributes such as mass, wing length and leg morphology upon the speed, acceleration, mode and energetic cost of movement by birds between flowers when foraging for nectar. This review attempts to consolidate and interpret available data and highlight areas where further investigations appear warranted. Australian honeyeaters are generally larger, and American hummingbirds smaller, than Hawaiian honeycreepers and sunbirds of Africa or Asia. Sunbirds, honeyeaters and honeycreepers generally perch while extracting nectar from flowers. Hummingbirds usually hover, apparently because suitable perches close to flowers are lacking, and not because hovering increases the speed at which flowers can be visited. Honeyeaters move from one flower to another at speeds that are at least as great as those for hummingbirds. Most passerine nectarivores need to ingest more nectar per day than hummingbirds in order to maintain energy balance, some species devoting more than 60% of the day to foraging. The major consequence of reduced foraging activity by hummingbirds, which spend only 5–30% of the day in this manner, appears to be male emancipation from nest construction and care of offspring. Large nectarivores have a greater capacity to store surplus food and to fast than smaller birds, and so can take advantage of short-lived peaks in nectar abundance. Nectarivores such as honeyeaters should therefore be favoured by the rapid diurnal changes in nectar availability which are characteristic of many Australian and African habitats. Body mass also determines the likely access to rich sources of nectar through size-related interspecific dominance hierarchies. In all families, larger species tend to monopolize the most rewarding nectar supplies, forcing smaller subordinate species to use poorer, more scattered sources. Within particular species, males usually have longer wings and greater masses than females. These variations imply that the two sexes differ with regard to their foraging ecology, although few supporting data are currently available.  相似文献   

8.
Nectar availability in Calothamnus quadrifidus flowers was studied at Wongamine Nature Reserve in late spring (November). Despite some overnight depletion by moths and other invertebrates, more nectar was present in flowers at dawn than at the preceding dusk. Significant nectar depletion occurred within a few hours after dawn, mainly due to foraging by two honeyeater species. Lichmera indistincta and Phylidonyris nigra. Thereafter, nectar availability was maintained at relatively low levels, principally because of foraging by honeyeaters and honey bees. Apis mellifera, that became active during the warmer part of the day. Although individual honeyeaters consumed more nectar than A. mellifera, honey bees were so abundant that their total impact was greater than that of either honeyeater species for much of the day. Transfer of C. quadrifidus pollen between flowers is necessary in order to achieve a high level of seed set, as the flowers appear to be protandrous. Honeyeaters appeared to be considerably more significant pollen vectors than A. mellifera.  相似文献   

9.
《新西兰生态学杂志》2011,21(2):169-179
New Zealand flowers are frequently considered unspecialised allowing easy access to pollen and nectar by a wide range of visitors. Most conform with a syndrome of insect pollination (entomophily). Pollination of forest flowers by birds has been described for a range of species whose flowers are morphologically ornithophilous. On Kapiti Island and Little Barrier Island, all three species of New Zealand honeyeaters have been described feeding on flowers currently assumed to be entomophilous or where the pollination system is unknown. The persistence and regularity of visits suggests that the birds are obtaining suitable rewards in the form of nectar and could be serving as pollinators. We measured the nectar energetic value from flowers of three ornithophilous and five entomophilous species. Nectar production over 24 hours was highest in ornithophilous species, but the standing crop of nectar overlapped—ornithophilous species: Metrosideros fulgens (standing crop 6.6 J), Metrosideros excelsa (22 J), and Fuchsia excorticata (1.8 J); and entomophilous: Pittosporum crassifolium (23 J), Pseudopanax arboreus (1.5 J), Dysoxylum spectabile (3.7 early flowers -6.7 J late flowers), Pittosporum eugenioides (2.7 J) and Geniostoma rupestre (1.8 J). The entomophilous species present the flowers in aggregation and as result birds can visit a large number flowers per minute. We found that the average estimated nectar consumption rate for all the entomophilous species except G. rupestre was enough to sustain the two smaller New Zealand honeyeaters (hihi energy requirements= 0.12 kJ min(-1), median energy obtained: 0.16 kJ min(-1) D. spectabile—0.57 kJ min(-1) P. crassifolium); bellbird energy requirements = 0.10 kJ min(-1), median energy obtained: 0.14 kJ min(-1) D. spectabile—0.68 kJ min(-1) P. crassifolium). However, we estimate that if the birds are able to selectively forage on the flowers with most nectar, the energetic returns of all species may be sufficient for hihi and bellbird (hihi: 0.18 kJ min(-1) G. rupestre—0.93 kJ min(-1); P. crassifolium; bellbird: 0.12 kJ min(-1) G. rupestre 1.11 kJ min(-1) P. crassifolium). If tui (energy requirements: 0.25 kJ min(-1), forages randomly, only P. crassifolium (0.80 kJ min(- 1)) and D. spectabile late in the season (0.30 kJ min(-1)) provide sufficient returns, but if selective, P. arboreus (0.45 kJ min(-1)) may also suffice. We suggest that because (a) the nectar produced by entomophilous flowers provides sufficient energy to sustain the energetic requirements of birds, and (b) these plants flower in the cooler months when insect activity is reduced, birds might have played a wider role in pollination than previously considered. This finding is of particular importance because the abundance of New Zealand honeyeaters on the mainland has decreased considerably since human colonisation and this could be affecting forest regeneration.  相似文献   

10.
New Holland honeyeaters collect nectar, manna or honeydew for energy and hawk small flying insects for protein. The insects taken were usually Diptera and Hymenoptera weighing 0.7 mg dry weight or less. Net rates of energy gain from hawking small flying insects were usually less than 20 J min?1 and sometimes negative and insufficient to meet the bird's daily energy requirements. Those from feeding on nectar, manna or honeydew were usually above 40J min?1 and often above 400J min?1 at dawn and the birds depended on these carbohydrates for energy. Nectar, manna and honeydew contained negligible amounts of protein, and the birds used small flying insects as sources of protein, and presumably other nutrients. Given that carbohydrate resources supply better rates of energy gain than insects. New Holland honeyeaters should collect their energy requirements from carbohydrates and only collect sufficient insects to satisfy their protein requirements. Estimates of the food intakes of both non-breeding and breedig birds showed that they did this. Non-breeding New Holland honeyeaters collected from 72 to 125 (mean 92) kJ of carbohydrates per day and 17 to 58 (mean 31) mg of protein per day. These meet the daily energy (75 kJ) and protein (20 mg) requirements of the birds. Breedig birds collected more carbohydrates and more insects, but in proportion to their increased energy and protein requirements respectively. New Holland honeyeaters are probably limited by their ability to meet their energy requirements from nectar, manna or honeydew and not by insects. Non-breeding birds collected their protein requirements in about 10 min of insect-feeding, but spent from 33 to 90% of the day collecting carbohydrates to meet their energy requirements. The maintenance requirement of 20 mg of protein per day for New Holland honeyeaters is about 25% of that estimated from standard equations for a bird of the same size. This low level may have evolved in response to low energy availability.  相似文献   

11.
Beak, wing, leg and intestinal lengths, and gizzard widths, were all significantly related to body mass in 51 honeyeater species from Australia, 48 honeyeater species from New Guinea and 31 purely insectivorous passerine bird species from Australia. The nectar-feeding honeyeaters had smaller gizzards and intestines than wholly insectivorous birds of comparable size, although their wing and leg lengths did not differ; New Guinean and Australian honeyeaters were similar in these respects. Overall, honeyeaters had longer beaks than pure insectivores. Among Australian honeyeaters, those genera consuming more nectar than insects had longer beaks than the less nectarivorous, more insectivorous genera. Indeed, the latter group had beaks comparable in length to wholly insectivorous birds. All morphological differences revealed were attributable to known differences in diet.  相似文献   

12.
Several researchers have attempted to calculate whether depression of nectar resources by Australian honeyeaters is likely to limit their densities. Such calculations can be misleading, however, and do not directly test whether birds depress nectar availability. I monitored changes in nectar availability during the 8–9 months that honeyeaters bred in heathland near Sydney, and caged inflorescences to test whether nectar availability was being depressed by birds. There were pronounced seasonal changes in nectar availability in each of 2 years, and caging substantially increased the amounts of nectar in inflorescences during months when nectar production was low. The effects of caging must have resulted from exclusion of honeyeaters, as: (i) open-ended cage controls showed that the effects of caging resulted from exclusion of foragers, not from artifacts of caging; (ii) day-only and night-only caging showed that nectar was depleted only during the day: and (iii) observations showed that cages did not exclude any diurnal foragers other than honeyeaters. Resident honeyeaters spent more time foraging during months when nectar was scarce, implying that the rates at which they could obtain nectar were affected by changes in nectar availability. It is therefore possible that the depletion of nectar by honeyeaters could have limited their densities. However. I argue that such limitation could only be inferred safely if nectar-supplementation experiments showed survival and/or reproduction to be limited by nectar availability.  相似文献   

13.
The numbers of honeyeaters present at particular sites in the Jarrah forest varied significantly from month to month, with peak abundance occurring between May and September. Numbers also varied from site to site, depending upon the major plant species present. Honeyeater abundance was not limited by arthropod availability, but in many instances was closely correlated with the availability of nectar, particularly that produced by Dryandra sessilis. Large honeyeaters, such as Anthochaera chrysoptera and Phylidonyris novaehollandiae, were generally most abundant at times and sites of greatest nectar production. Small honeyeaters, such as Acanthorhynchus superciliosis, were never abundant but were present for most of the year. The production of nectar between October and December was such that more honeyeaters could have been supported than were actually present. Low numbers at these times can be explained in terms of reduced foraging efficiency that would have resulted from more widely dispersed flowers, and the possible availability of more rewarding nectar resources at other sites.  相似文献   

14.
The bills and tongues of nectar-feeding birds differ from continent to continent. The major differences are that: (i) the tongues of A Australian honeyeaters are broader any more fimbricated at the tip than the bifurcated tongues of sunbirds and hummingbirds; (ii) the bills of hummingbirds are more uniformly narrow and taper less markedly towards their tips than those of sun-birds and honeyeaters; and (iii) bill curvatures are generally greater for sunbirds and honey-creepers than for hummingbirds. A variety of hummingbirds has straight or even slightly upturned bills, while bills for all sunbirds, honeycreepers and honeyeaters are decurved to some extent. Despite differences in tongue morphology, hummingbirds, sunbirds and honeyeaters extract nectar at a similar range of rates, averaging approximately 40 γL s?1 from ad libitum feeders, and 1–15 γL?1 from flowers. All tongues collect nectar by capillarity, with licking rates of 6–17 s?1. Licking behaviour has been little studied, although speeds of licking respond to changes in sugar concentration and corolla length. The tongues of honeyeaters are broad, and may need to be brush-tipped in order to allow capillary collection of nectar. Brush-tipped tongues can cover large surface areas on each lick, and may allow honeyeaters to exploit nectar and honeydew that is thinly spread over large surface areas. Bill lengths of nectarivorous birds are similar in all regions, though species of hummingbird have the shortest and longest bills. Bill lengths largely determine the range of floral lengths that can be legitimately probed. Maximum floral lengths exceed bill lengths, since hummingbirds, sunbirds and honeyeaters protrude their tongues beyond the tips of their bills. Rates of nectar extraction, however, decline rapidly once the floral length exceeds bill length. Decurved bills may have evolved in honeyeaters and sunbirds to enable perching birds to reach flowers at the ends of branches more easily. Consistent differences in bill length between the sexes suggest that males and females may exploit different floral resources or different proportions of the same resources. For honeyeaters and sunbirds, males have longer bills than females, but the reverse is true for many hummingbirds.  相似文献   

15.
Recent studies have shown that dense yeast populations often occurring in floral nectar are numerically dominated by a few species from the flower-insect interface specialized genus Metschnikowia, while generalist yeast species commonly occurring on leaf surfaces, soil, freshwater, and air were rarely isolated from nectar samples. This study was designed to understand the main factors responsible for the assembly of nectar yeast communities, by combining field experiments with laboratory tests characterizing the physiological abilities of all yeast species forming the pool of potential colonizers for two Spanish flowering plants (Digitalis obscura and Atropa baetica). Yeast frequency and species richness were assessed in external sources (bee glossae, air, plant phylloplane) as well as in pollinator rewards (pollen, nectar). Yeasts were most frequent in external sources (air, flower-visiting insects), less so in the proximate floral environment (phylloplane), and least in pollen and nectar. Nectar communities appeared to be considerably impoverished versions of those in insect glossae and phylloplane. Nectar, pollen, and insect yeast assemblages differed in physiological characteristics from those in other substrates. Nectarivorous Metschnikowia were not more resistant than other yeast species to plant secondary compounds and high sugar concentrations typical of nectar, but their higher growth rates may be decisive for their dominance in ephemeral nectar communities.  相似文献   

16.
The relationship between plant and pollinator is considered as the mutualism because plant benefits from the pollinator's transport of male gametes and pollinator benefits from plant's reward.Nectar robbers are frequently described as cheaters in the plant-pollinator mutualism,because it is assumed that they obtain a reward (nectar) without providing a service (pollination).Nectar robbers are birds,insects,or other flower visitors that remove nectar from flowers through a hole pierced or bitten in the corolla.Nectar robbing represents a complex relationship between animals and plants.Whether plants benefit from the relationship is always a controversial issue in earlier studies.This paper is a review of the recent literatures on nectar robbing and attempts to acquire an expanded understanding of the ecological and evolutionary roles that robbers play.Understanding the effects of nectar robbers on the plants that they visited and other flower visitors is especially important when one considers the high rates of robbing that a plant population may experience and the high percentage of all flower visitors that nectar robbers make to some species.There are two standpoints in explaining why animals forage on flowers and steal nectar in an illegitimate behavior.One is that animals can only get food in illegitimate way because of the mismatch of the morphologies of animals'mouthparts and floral structure.The other point of view argues that nectar robbing is a relatively more efficient,thus more energy-saving way for animals to get nectar from flowers.This is probably associated with the difficulty of changing attitudes that have been held for a long time.In the case of positive effect,the bodies of nectar robbers frequently touch the sex organs of plants during their visiting to the flowers and causing pollination.The neutral effect,nectar robbers' behavior may destruct the corollas of flowers,but they neither touch the sex organs nor destroy the ovules.Their behavior does not affect the fruit sets or seed sets of the hosting plant.Besides the direct impacts on plants,nectar robbers may also have an indirect effect on the behavior of the legitimate pollinators.Under some circumstances,the change in pollinator behavior could result in improved reproductive fitness of plants through increased pollen flow and out-crossing.  相似文献   

17.
Seasonal changes in numbers and body condition of honeyeaters were examined over 2 years in the New England National Park, New South Wales, Australia. Nectar availability measured as inflorescence density and nectar production were also recorded. In the main study site, the abundance of six of the seven most common species of honeyeater was significantly correlated with inflorescence density. However, honeyeater numbers were not significantly correlated with daily energy productivity. Unlike most honeyeater communities, the New England community was dominated numerically by the Eastern Spinebill, the smallest of the most common species present. Among the most common species, the duration of time a species was recorded in the area was negatively, but not significantly, correlated with its size. All species examined showed similar seasonal changes in body condition, with the highest bodyweights and fat deposits recorded in winter.  相似文献   

18.
在动植物的相互关系中,盗蜜行为被认为是一种不同于普通传粉者的非正常访花行为。动物之所以要采取这种特殊的觅食策略,有假说认为是由访花者的口器和植物的花部形态不匹配造成的,也有认为是盗蜜行为提高了觅食效率从而使盗蜜者受益。在盗蜜现象中,盗蜜者和宿主植物之间的关系是复杂的。盗蜜对宿主植物的影响尤其是对其繁殖适合度的影响归纳起来有正面、负面以及中性3类。与此同时,盗蜜者的种类, 性别及其掠食行为差异不仅与生境因素密切相关,而且会对宿主植物的繁殖成功产生直接或间接的影响。另外,盗蜜者的存在无疑对其它正常传粉者的访花行为也产生一定的影响,从而间接地影响宿主植物的繁殖成功, 而植物在花部形态上也出现了对盗蜜现象的适应性进化。作者认为, 盗蜜是短嘴蜂对长管型花最有效的一种掠食策略, 它不仅增加了盗蜜者对资源的利用能力, 而且由于盗蜜对宿主植物繁殖成功的不同的影响使其具有调节盗蜜者和宿主之间种群动态的作用, 两者的彼此适应是一种协同进化的结果。  相似文献   

19.
 Nectarivory has evolved many times in birds: although best known in hummingbirds, sunbirds and honeyeaters, it also occurs on an opportunistic basis in a varied assortment of birds. We present a phylogenetic analysis of the distribution of nectarivory in birds. Specialised avian nectarivores are generally small, with an energetic lifestyle and high metabolic rates. Their high degree of dependence on nectar as a food source has led to convergence in morphological, physiological and behavioural adaptations. We examine the constituents of nectar which are most important to bird consumers, and how the birds deal with them in terms of physiology and behaviour. There are still unanswered questions: for example, the dichotomy between sucrose-rich nectars in hummingbird-pollinated plants and predominantly hexose-rich nectars in sunbird-pollinated plants appears to have little to do with bird physiologies and may rather reflect patterns of nectar secretion. Received November 28, 2002; accepted January 26, 2003 Published online: June 2, 2003  相似文献   

20.
The relationship between plant and pollinator is considered as the mutualism because plant benefits from the pollinator’s transport of male gametes and pollinator benefits from plant’s reward. Nectar robbers are frequently described as cheaters in the plant-pollinator mutualism, because it is assumed that they obtain a reward (nectar) without providing a service (pollination). Nectar robbers are birds, insects, or other flower visitors that remove nectar from flowers through a hole pierced or bitten in the corolla. Nectar robbing represents a complex relationship between animals and plants. Whether plants benefit from the relationship is always a controversial issue in earlier studies. This paper is a review of the recent literatures on nectar robbing and attempts to acquire an expanded understanding of the ecological and evolutionary roles that robbers play. Understanding the effects of nectar robbers on the plants that they visited and other flower visitors is especially important when one considers the high rates of robbing that a plant population may experience and the high percentage of all flower visitors that nectar robbers make to some species. There are two standpoints in explaining why animals forage on flowers and steal nectar in an illegitimate behavior. One is that animals can only get food in illegitimate way because of the mismatch of the morphologies of animals’ mouthparts and floral structure. The other point of view argues that nectar robbing is a relatively more efficient, thus more energy-saving way for animals to get nectar from flowers. This is probably associated with the difficulty of changing attitudes that have been held for a long time. In the case of positive effect, the bodies of nectar robbers frequently touch the sex organs of plants during their visiting to the flowers and causing pollination. The neutral effect, nectar robbers’ behavior may destruct the corollas of flowers, but they neither touch the sex organs nor destroy the ovules. Their behavior does not affect the fruit sets or seed sets of the hosting plant. Besides the direct impacts on plants, nectar robbers may also have an indirect effect on the behavior of the legitimate pollinators. Under some circumstances, the change in pollinator behavior could result in improved reproductive fitness of plants through increased pollen flow and out-crossing. __________ Translated from Acta phytoecologiaca Sinica, 2006, 30(4): 695–702 [译自: 植物生态学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号