首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoinositide 3-kinases (PI3-Ks) are an ubiquitous class of signaling enzymes that regulate diverse cellular processes including growth, differentiation, and motility. Physiological roles of PI3-Ks have traditionally been assigned using two pharmacological inhibitors, LY294002 and wortmannin. Although these compounds are broadly specific for the PI3-K family, they show little selectivity among family members, and the development of isoform-specific inhibitors of these enzymes has been long anticipated. Herein, we prepare compounds from two classes of arylmorpholine PI3-K inhibitors and characterize their specificity against a comprehensive panel of targets within the PI3-K family. We identify multiplex inhibitors that potently inhibit distinct subsets of PI3-K isoforms, including the first selective inhibitor of p110beta/p110delta (IC(50) p110beta=0.13 microM, p110delta=0.63 microM). We also identify trends that suggest certain PI3-K isoforms may be more sensitive to potent inhibition by arylmorpholines, thereby guiding future drug design based on this pharmacophore.  相似文献   

2.
Recent genetic knock-in and pharmacological approaches have suggested that, of class IA PI3Ks (phosphatidylinositol 3-kinases), it is the p110alpha isoform (PIK3CA) that plays the predominant role in insulin signalling. We have used isoform-selective inhibitors of class IA PI3K to dissect further the roles of individual p110 isoforms in insulin signalling. These include a p110alpha-specific inhibitor (PIK-75), a p110alpha-selective inhibitor (PI-103), a p110beta-specific inhibitor (TGX-221) and a p110delta-specific inhibitor (IC87114). Although we find that p110alpha is necessary for insulin-stimulated phosphorylation of PKB (protein kinase B) in several cell lines, we find that this is not the case in HepG2 hepatoma cells. Inhibition of p110beta or p110delta alone was also not sufficient to block insulin signalling to PKB in these cells, but, when added in combination with p110alpha inhibitors, they are able to significantly attenuate insulin signalling. Surprisingly, in J774.2 macrophage cells, insulin signalling to PKB was inhibited to a similar extent by inhibitors of p110alpha, p110beta or p110delta. These results provide evidence that p110beta and p110delta can play a role in insulin signalling and also provide the first evidence that there can be functional redundancy between p110 isoforms. Further, our results indicate that the degree of functional redundancy is linked to the relative levels of expression of each isoform in the target cells.  相似文献   

3.
Simon JA 《Cell》2006,125(4):647-649
In this issue of Cell, Knight et al. (2006) present a detailed pharmacological analysis of the PI3 kinase (PI3-K) family using small molecule inhibitors. They conclude that p110alpha, a PI3-K isoform, has a critical role in insulin signaling. In a related Cancer Cell paper, Fan et al. (2006) show that blocking activation of both p110alpha and the kinase mTOR with a small molecule inhibitor limits the growth of gliomas.  相似文献   

4.
Ventricular cardiomyocytes and cardiac tissue of lean and genetically obese (fa/fa) Zucker rats were used 1) to study the role of the p85 regulatory subunit isoforms p85 alpha and p85 beta for insulin signaling through the phosphatidylinositol (PI) 3-kinase pathway, and 2) to elucidate the implications of these mechanisms for cardiac insulin resistance. Western blot analysis of cardiomyocyte lysates revealed expression of p85 alpha and p85 beta but no detectable amounts of the splice variants of p85 alpha. Essentially no p85 alpha subunit of PI 3-kinase was found to be associated with insulin receptor substrate (IRS)-1 or IRS-2 in basal and insulin-stimulated (5 min) cardiomyocytes. Instead, insulin produced a twofold increase in p85 beta associated with IRS-1, leading to a three- to fourfold increase in p85 beta-associated PI 3-kinase activity. This response was significantly reduced in obese animals. Comparable results were obtained in the intact heart after in vivo stimulation. In GLUT-4-containing vesicles, an increased abundance (3.7 +/- 0.7-fold over basal) of p85 alpha was observed after insulin stimulation of lean animals, with no significant effect in the obese group. No p85 beta could be detected in GLUT-4-containing vesicles. Recruitment of the p110 catalytic subunit of PI 3-kinase and a twofold increase in enzyme activity in GLUT-4-containing vesicles by insulin was observed only in lean rats. We conclude that, in the heart, p85 alpha recruits PI 3-kinase activity to GLUT-4 vesicles, whereas p85 beta represents the main regulator of IRS-1- and IRS-2-mediated PI 3-kinase activation. Furthermore, multiple defects of PI 3-kinase activation, involving both the p85 alpha and the p85 beta adaptor subunits, may contribute to cardiac insulin resistance.  相似文献   

5.
Phosphoinositide 3-kinase (PI3K) is an early signaling molecule that regulates cell growth and cell cycle entry. PI3K is activated immediately after growth factor receptor stimulation (at the G(0)/G(1) transition) and again in late G(1). The two ubiquitous PI3K isoforms (p110alpha and p110beta) are essential during embryonic development and are thought to control cell division. Nonetheless, it is presently unknown at which point each is activated during the cell cycle and whether or not they both control S-phase entry. We found that p110alpha was activated first in G(0)/G(1), followed by a minor p110beta activity peak. In late G(1), p110alpha activation preceded that of p110beta, which showed the maximum activity at this time. p110beta activation required Ras activity, whereas p110alpha was first activated by tyrosine kinases and then further induced by active Ras. Interference with p110alpha and -beta activity diminished the activation of downstream effectors with different kinetics, with a selective action of p110alpha in blocking early G(1) events. We show that inhibition of either p110alpha or p110beta reduced cell cycle entry. These results reveal that PI3Kalpha and -beta present distinct activation requirements and kinetics in G(1) phase, with a selective action of PI3Kalpha at the G(0)/G(1) phase transition. Nevertheless, PI3Kalpha and -beta both regulate S-phase entry.  相似文献   

6.
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.  相似文献   

7.
Activation of p85/p110 type phosphatidylinositol kinase is essential for aspects of insulin-induced glucose metabolism, including translocation of GLUT4 to the cell surface and glycogen synthesis. The enzyme exists as a heterodimer containing a regulatory subunit (e.g. p85alpha) and one of two widely distributed isoforms of the p110 catalytic subunit: p110alpha or p110beta. In the present study, we compared the two isoforms in the regulation of insulin action. During differentiation of 3T3-L1 cells into adipocytes, p110beta was up-regulated approximately 10-fold, whereas expression of p110alpha was unaltered. The effects of the increased p110 expression were further assessed by expressing epitope tagged p110beta and p110alpha in 3T3-L1 cells using adenovirus transduction systems, respectively. In vitro, the basal lipid kinase activity of p110beta was lower than that of p110alpha. When p110alpha and p110beta were overexpressed in 3T3-L1 adipocytes, exposing cells to insulin induced each of the subunits to form complexes with p85alpha and tyrosine-phosphorylated IRS-1 with similar efficiency. However, whereas the kinase activity of p110beta, either endogenous or exogeneous, was markedly enhanced by insulin stimulation, only very small increases of the activity of p110alpha were observed. Interestingly, overexpression of p110beta increased insulin-induced glucose uptake by 3T3-L1 cells without significantly affecting basal glucose transport, whereas overexpression of p110alpha increased both basal and insulin-stimulated glucose uptake. Finally, microinjection of anti-p110beta neutralizing antibody into 3T3-L1 adipocytes abolished insulin-induced translocation of GLUT4 to the cell surface almost completely, whereas anti-p110alpha neutralizing antibody did only slightly. Together, these findings suggest that p110beta plays a crucial role in cellular activities evoked acutely by insulin.  相似文献   

8.
Phosphoinositide 3-kinase (PI 3-kinase) activity is required for growth factor-induced cytoskeletal regulation and cell migration. We previously found that in MTLn3 rat adenocarcinoma cells, EGF-stimulated induction of actin barbed ends and lamellipod extension specifically requires the p85/p110alpha isoform of PI 3-kinase. To further characterize signaling by distinct PI 3-kinase isoforms, we have developed MTLn3 cells that transiently or stably overexpress either p110alpha or p110beta. Transient overexpression of p110beta inhibited EGF-stimulated lamellipod extension, whereas p110alpha-transfected cells showed normal EGF-stimulated lamellipod extension. Similar results were obtained by overexpression of kinase-dead p110beta, suggesting that effects on cytoskeletal signaling were due to competition with p85/p110alpha complexes. Stable overexpression of p110alpha appeared to be toxic, based on the difficulty in obtaining stable overexpressing clones. In contrast, cells expressing a 2-fold increase in p110beta were readily obtainable. Interestingly, cells stably expressing p110beta showed a marked inhibition of EGF-stimulated lamellipod extension. Using computer-assisted analysis of time-lapse images, we found that overexpression of p110beta caused a nearly complete inhibition of motility. Cells overexpressing p110beta showed normal activation of Akt and Erk, suggesting that overall PI 3-kinase signaling was intact. A chimeric p110 molecule containing the p85-binding and Ras-binding domains of p110alpha and the C2, helical, and kinase domains of p110beta, was catalytically active yet also inhibited EGF-stimulated lamellipod extension. These data highlight the differential signaling by distinct p110 isoforms. Identification of effectors that are differently regulated by p110alpha versus p110beta will be important for understanding cell migration and its role in metastasis.  相似文献   

9.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

10.
A single residue in the ATP binding pocket of protein kinases-termed the gatekeeper-has been shown to control sensitivity to a wide range of small molecule inhibitors (Chem. Biol.2004, 11, 691; Chem. Biol.1999, 6, 671). Kinases that possess a small side chain at this position (Thr, Ala, or Gly) are readily targeted by structurally diverse classes of inhibitors, whereas kinases that possess a larger residue at this position are broadly resistant. Recently, lipid kinases of the phosphoinositide 3-kinase (PI3-K) family have become the focus of intense research interest as potential drug targets (Chem. Biol.2003, 10, 207; Curr. Opin. Pharmacol.2003, 3, 426). In this study, we identify the residue that corresponds structurally to the gatekeeper in PI3-Ks, and explore its importance in controlling enzyme activity and small molecule sensitivity. Isoleucine 848 of p110alpha was mutated to alanine and glycine, but the mutated kinase was found to have severely impaired enzymatic activity. A structural bioinformatic comparison of this kinase with its yeast orthologs identified second site mutations that rescued the enzymatic activity of the I848A kinase. To probe the dimensions of the gatekeeper pocket, a focused panel of analogs of the PI3-K inhibitor LY294002 was synthesized and its activity against gatekeeper mutated and wild-type p110alpha was assessed.  相似文献   

11.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

12.
We investigated the effects of methylxanthines on enzymatic activity of phosphoinositide 3-kinases (PI3Ks). We found that caffeine inhibits the in vitro lipid kinase of class I PI3Ks (IC(50) = 75 microm for p110 delta, 400 microm for p110 alpha and p110 beta, and 1 mm for p110 gamma), and theophylline has similar effects (IC(50) = 75 microm for p110 delta, 300 microm for p110 alpha, and 800 microm for p110 beta and p110 gamma) and also inhibits the alpha isoform of class II PI3K (PI3K-C2 alpha) (IC(50) approximately 400 microm). However, four other xanthine derivatives tested (3-isobutyl-1-methylxanthine, 3-propylxanthine, alloxazine, and PD116948 (8-cyclopentyl-1,3-dipropylxanthine)) were an order of magnitude less effective. Surprisingly the triazoloquinazoline CGS15943 (9-chloro-2-(2-furyl)(1,2,d)triazolo(1,5-c)quinazolin-5-amine) also selectively inhibits p110 delta (IC(50) < 10 microm). Caffeine and theophylline also inhibit the intrinsic protein kinase activity of the class IA PI3Ks and DNA-dependent protein kinase, although with a much lower potency than that for the lipid kinase (IC(50) approximately 10 mm for p110 alpha, 3 mm for p110 beta, and 10 mm for DNA-dependent protein kinase). In CHO-IR cells and rat soleus muscle, theophylline and caffeine block the ability of insulin to stimulate protein kinase B with IC(50) values similar to those for inhibition of PI3K activity, whereas insulin stimulation of ERK1 or ERK2 was not inhibited at concentrations up to 10 mm. Theophylline and caffeine also blocked insulin stimulation of glucose transport in CHO-IR cells. These results demonstrate that these methylxanthines are direct inhibitors of PI3K lipid kinase activity but are distinctly less effective against serine kinase activity and thus could be of potential use in dissecting these two distinct kinase activities. Theophylline, caffeine, and CGS15943 may be of particular use in dissecting the specific role of the p110 delta lipid kinase. Finally, we conclude that inhibition of PI3K (p110 delta in particular) is likely explain some of the physiological and pharmacological properties of caffeine and theophylline.  相似文献   

13.
Studies ex vivo have shown that phosphoinositide 3-kinase (PI3K) activity is necessary but not sufficient for insulin-stimulated glucose uptake. Unexpectedly, mice lacking either of the PI3K regulatory subunits p85alpha or p85beta exhibit increased insulin sensitivity. The insulin hypersensitivity is particularly unexpected in p85alpha-/- p55alpha-/- p50alpha-/- mice, where a decrease in p110alpha and p110beta catalytic subunits was observed in insulin-sensitive tissues. These results raised the possibility that decreasing total PI3K available for stimulation by insulin might circumvent negative feedback loops that ultimately shut off insulin-dependent glucose uptake in vivo. Here we present results arguing against this explanation. We show that p110alpha+/- p110beta+/- mice exhibit mild glucose intolerance and hyperinsulinemia in the fasted state. Unexpectedly, p110alpha+/- p110beta+/- mice showed a approximately 50% decrease in p85 expression in liver and muscle. Consistent with this in vivo observation, knockdown of p110 by RNA interference in mammalian cells resulted in loss of p85 proteins due to decreased protein stability. We propose that insulin sensitivity is regulated by a delicate balance between p85 and p110 subunits and that p85 subunits mediate a negative role in insulin signaling independent of their role as mediators of PI3K activation.  相似文献   

14.
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.  相似文献   

15.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

16.
NTT (N-terminal tags) on the catalytic (p110) sub-unit of PI 3-K (phosphoinositol 3-kinase) have previously been shown to increase cell signalling and oncogenic transformation. Here we test the impact of an NT (N-terminal) His-tag on in vitro lipid and protein kinase activity of all class-1 PI 3-K isoforms and two representative oncogenic mutant forms (E545K and H1047R), in order to elucidate the mechanisms behind this elevated signalling and transformation observed in vivo. Our results show that an NT His-tag has no impact on lipid kinase activity as measured by enzyme titration, kinetics and inhibitor susceptibility. Conversely, the NT His-tag did result in a differential effect on protein kinase activity, further potentiating the elevated protein kinase activity of both the helical domain and catalytic domain oncogenic mutants with relation to p110 phosphorylation. All other isoforms also showed elevated p110 phosphorylation (although not statistically significant). We conclude that the previously reported increase in cell signalling and oncogenic-like transformation in response to p110 NTT is not mediated via an increase in the lipid kinase activity of PI 3-K, but may be mediated by increased p110 autophosphorylation and/or other, as yet unidentified, intracellular protein/protein interactions. We further observe that tagged recombinant protein is suitable for use in in vitro lipid kinase screens to identify PI 3-K inhibitors; however, we recommend that in vivo (including intracellular) experiments and investigations into the protein kinase activity of PI 3-K should be conducted with untagged constructs.  相似文献   

17.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

18.
Platelet activation at sites of vascular injury is essential for the arrest of bleeding; however, excessive platelet accumulation at regions of atherosclerotic plaque rupture can result in the development of arterial thrombi, precipitating diseases such as acute myocardial infarction and ischemic stroke. Rheological disturbances (high shear stress) have an important role in promoting arterial thrombosis by enhancing the adhesive and signaling function of platelet integrin alpha(IIb)beta(3) (GPIIb-IIIa). In this study we have defined a key role for the Type Ia phosphoinositide 3-kinase (PI3K) p110beta isoform in regulating the formation and stability of integrin alpha(IIb)beta(3) adhesion bonds, necessary for shear activation of platelets. Isoform-selective PI3K p110beta inhibitors have been developed which prevent formation of stable integrin alpha(IIb)beta(3) adhesion contacts, leading to defective platelet thrombus formation. In vivo, these inhibitors eliminate occlusive thrombus formation but do not prolong bleeding time. These studies define PI3K p110beta as an important new target for antithrombotic therapy.  相似文献   

19.
20.
One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85 alpha adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110 alpha phosphorylates p85 alpha Ser608 in vivo with significant stoichiometry. However, p110 beta is far less efficient at phosphorylating p85 alpha Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85 alpha Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110 alpha catalytic subunit with p85 alpha. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85 alpha mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号