首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porcine pepsinogen A (EC 3.4.23.1) and progastricsin (EC 3.4.23.3) have been separated by chromatography on DEAE-cellulose followed by chromatography on DEAE-Sepharose. Agar gel electrophoresis at pH 6.0 showed the presence of three components of pepsinogen A and two of progastricsin. During activation at pH 2 a segment of 43 amino acid residues (the prosegment peptide) is cleaved from the N-terminus of progastricsin. The sequence of this was determined; in addition, the first 30 residues of gastricsin were sequenced. The sequence of the first 73 amino acid residues of progastricsin shows an overall identity with progastricsins from man, monkey and rat of 67%. The overall identity with other zymogens for gastric proteinases is 27%. The highly conserved Lys36p (pig pepsinogen A numbering) is changed to Arg in porcine progastricsin.  相似文献   

2.
Position 36p in the propeptides of gastric aspartic proteinases is generally occupied by lysine or arginine. This has led to the conclusion that a basic residue at this position, which interacts with the active-site aspartates, is essential for folding and activation of the zymogen. Lamb prochymosin has been shown by cDNA cloning to possess glutamic acid at 36p. To investigate the effect of this natural mutation which appears to contradict the proposed role of this residue, calf and lamb prochymosins and their two reciprocal mutants, K36pE and E36pK, respectively, were expressed in Escherichia coli, refolded in vitro, and autoactivated at pH 2 and 4.7. All four zymogens could be activated to active chymosin and, at both pH values, the two proteins with Glu36p showed higher activation rates than the two Lys36p forms. Glu36p was also demonstrated in natural prochymosin isolated from the fourth stomach of lamb, as well as being encoded in the genomes of sheep, goat and mouflon, which belong to the subfamily Caprinae. A conserved basic residue at position 36p of prochymosin is thus not obligatory for its folding or autocatalytic activation. The apparently contradictory results for porcine pepsinogen A [Richter, C., Tanaka, T., Koseki, T. & Yada, R.Y. (1999) Eur. J. Biochem. 261, 746-752] can be reconciled with those for prochymosin. Lys/Arg36p is involved in stabilizing the propeptide-enzyme interaction, along with residues nearer the N-terminus of the propeptide, the sequence of which varies between species. The relative contribution of residue 36p to stability differs between pepsinogen and prochymosin, being larger in the former.  相似文献   

3.
Two pepsinogens (pepsinogens 1 and 2) were purified from the esophageal mucosa of the bullfrog (Rana catesbeiana), and their molecular weights were determined to be 40,100 and 39,200, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal 70-residue sequences of both pepsinogens are the same, including the 36-residue activation segment. Furthermore, a cDNA clone encoding frog pepsinogen was obtained and sequenced, which permitted deduction of the complete amino acid sequence (368 residues) of one of the pepsinogen isozymogens. The calculated molecular weight of the protein (40,034) coincided well with the values obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results are incompatible with the previous report (Shugerman R. P., Hirschowitz, B. I., Bhown, A. S., Schrohenloher, R. E., and Spenney, J. G. (1982) J. Biol. Chem. 257, 795-798) that the major pepsinogen isolated from the bullfrog esophageal gland is a unique "mini" pepsinogen with a molecular weight of approximately 32,000-34,000. The two pepsinogens were immunologically indistinguishable from each other and related to human pepsinogen C. The deduced amino acid sequence was also more homologous with those of pepsinogens C than those of pepsinogens A and prochymosin. These results indicate that the frog pepsinogens belong to the pepsinogen C group. They were both glycoproteins, and therefore, this is the first finding of carbohydrate-containing pepsinogens C. Both pepsinogens were activated to pepsins in the same manner by an apparent one-step mechanism. The resulting pepsins were enzymatically indistinguishable from each other, and their properties resembled those of tuna pepsins.  相似文献   

4.
Five pepsinogens were purified to homogeneity from the gastric mucosa of Asiatic black bear and termed pepsinogens I-1, I-2, II-1, II-2, and III. Pepsinogen II-1 was the major component and accounted for more than half of the total pepsinogens. Their molecular weights were estimated to be 40,000 for pepsinogens I-1 and I-2, 38,000 for pepsinogens II-1 and II-2, and 42,000 for pepsinogen III. They resembled each other in amino acid composition, except that pepsinogens I-1 and I-2 contained larger numbers of basic residues than the others. Pepsinogen III was a glycoprotein containing about 3.7% carbohydrate. Each was activated to the corresponding pepsin and their enzymatic characteristics were investigated. The optimal pH against hemoglobin was about 2.2 for pepsin I-1, and about 2.5 for pepsins II-1, II-2, and III. Each pepsin was inhibited by pepstatin as well as porcine pepsin and also by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy)-propane, and p-bromophenacyl bromide. Each pepsin could hydrolyze N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine, but the specific activity was much lower than that of porcine pepsin. Activation peptides corresponding to residues 1-43, 1-25, and 26-43 were isolated from an activation mixture of pepsinogen II-1. The amino acid sequences of these peptides and of the NH2-terminal portions of pepsinogen II-1 and pepsin II-1 were determined, resulting in the complete NH2-terminal 60-residue sequence of pepsinogen II-1.  相似文献   

5.
Porcine pepsin, an aspartic protease, is unstable at neutral pHs where it rapidly loses activity, however, its zymogen, pepsinogen, is stable at neutral pHs. The difference between the two is the presence of the prosegment in pepsinogen. In this study, possible factors responsible for instability were investigated and included: (i) the distribution of positively charged residues on the surface, (ii) an insertion of a peptide in the C-terminal domain and (iii) the dissociation of the N-terminal fragment of pepsin. Mutations to change the number and the distribution of positive charges on the surface had a minor effect on stability. No effect on stability was observed for the deletion of a peptide from the C-terminal domain. However, mutations on the N-terminal fragment had a major impact on stability. At pH 7.0, the N-fragment mutant was inactivated 5.8 times slower than the wild-type. The introduction of a disulfide bond between the N-terminal fragment and the enzyme body prevented the enzyme from denaturing. The above results showed that the inactivation of pepsin was initiated by the dissociation of the N-fragment and that the sequence of this portion was a major determinant for enzyme stability. Through this study, we have created porcine pepsin with increased pH stability at neutral pHs.  相似文献   

6.
Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.  相似文献   

7.
In order to clarify the structure and development of rabbit pepsinogens, purification and molecular cloning of these proteins were performed at various developmental stages. Several pepsinogens were isolated, and they were classified as pepsinogens F and M, and into pepsinogen groups I, II, and III. The relative levels and specific activities of the various pepsinogens changed significantly during development. Pepsinogens F and M were present only at the early postnatal stage, and their level was higher than those of other pepsinogens at this stage. Pepsinogens in groups I, II, and III were the predominant zymogens at the late postnatal stage. cDNA clones encoding all of these pepsinogens were obtained, with the exception of pepsinogens I and M, and the nucleotide sequences were determined. Each cDNA contained a leader region (signal peptide), a pro-region (activation segment), and a pepsin region, of 15, 44, and 328 residues, respectively, with the exception of the cDNA for pepsinogen F in which the pro- and pepsin regions were composed of 43 and 330 residues, respectively. Pepsinogens in groups II and III exhibited a high degree of similarity with one another, whereas many substitutions were found in pepsinogen F. A unique substitution in the activation segment of pepsinogen F, namely, Gly----Asp at position 21, was found, which made the structural features of this segment more specific. A phylogenic tree was constructed from the differences in nucleotide sequences and showed clearly that each pepsinogen in groups II and III could be classified as pepsinogen A, a major pepsinogen in mammals. Pepsinogen F diverged significantly from these groups and may be a new type of pepsinogen. Northern analysis revealed that the expression of the gene for pepsinogen F was restricted to the early postnatal stage, and the expression of genes for pepsinogens in groups II and III was detected predominantly at later stages, a result that shows the switching of gene expression from fetal pepsinogen to adult pepsinogens during development.  相似文献   

8.
In structure-function studies on bovine rhodopsin by in vitro site-specific mutagenesis, we have prepared three mutants in the cytoplasmic loop between the putative transmembrane helices E and F. In each mutant, charged amino acid residues were replaced by neutral residues: mutant 1, Glu239----Gln; mutant 2, Lys248----Leu; and mutant 3, Glu247----Gln, Lys248----Leu, and Glu249----Gln. The mutant rhodopsin genes were expressed in monkey kidney (COS-1) cells. After the addition of 11-cis-retinal to the cells, the rhodopsin mutants were purified by immunoaffinity adsorption. Each mutant gave a wild-type rhodopsin visible absorption spectrum. The mutants were assayed for their ability to stimulate the GTPase activity of transducin in a light-dependent manner. While mutants 1 and 3 showed wild-type activity, mutant 2 (Lys248----Leu) was inactive.  相似文献   

9.
10.
Refined structure of porcine pepsinogen at 1.8 A resolution   总被引:1,自引:0,他引:1  
The molecular structure of porcine pepsinogen at 1.8 A resolution has been determined by a combination of molecular replacement and multiple isomorphous phasing techniques. The resulting structure was refined by restrained-parameter least-squares methods. The final R factor [formula: see text] is 0.164 for 32,264 reflections with I greater than or equal to sigma (I) in the resolution range of 8.0 to 1.8 A. The model consists of 2785 protein atoms in 370 residues, a phosphoryl group on Ser68 and 238 ordered water molecules. The resulting molecular stereochemistry is consistent with a well-refined crystal structure with co-ordinate accuracy in the range of 0.10 to 0.15 A for the well-ordered regions of the molecule (B less than 15 A2). For the enzyme portion of the zymogen, the root-mean-square difference in C alpha atom co-ordinates with the refined porcine pepsin structure is 0.90 A (284 common atoms) and with the C alpha atoms of penicillopepsin it is 1.63 A (275 common atoms). The additional 44 N-terminal amino acids of the prosegment (Leu1p to Leu44p, using the letter p after the residue number to distinguish the residues of the prosegment) adopt a relatively compact structure consisting of a long beta-strand followed by two approximately orthogonal alpha-helices and a short 3(10)-helix. Intimate contacts, both electrostatic and hydrophobic interactions, are made with residues in the pepsin active site. The N-terminal beta-strand, Leu1p to Leu6p, forms part of the six-stranded beta-sheet common to the aspartic proteinases. In the zymogen the first 13 residues of pepsin, Ile1 to Glu13, adopt a completely different conformation from that of the mature enzyme. The C alpha atom of Ile1 must move approximately 44 A in going from its position in the inactive zymogen to its observed position in active pepsin. Electrostatic interactions of Lys36pN and hydrogen-bonding interactions of Tyr37pOH, and Tyr90H with the two catalytic aspartate groups, Asp32 and Asp215, prevent substrate access to the active site of the zymogen. We have made a detailed comparison of the mammalian pepsinogen fold with the fungal aspartic proteinase fold of penicillopepsin, used for the molecular replacement solution. A structurally derived alignment of the two sequences is presented.  相似文献   

11.
Human prorenin activation by acid or trypsin is faster than rat prorenin by two orders of magnitude. No plausible mechanism exists to explain the difference. Two chimeric mutant prorenins were produced in CHO cells. A chimera, hPro/rRen, composed of human prorenin prosegment and rat active renin segment, was activated as fast as wild-type human prorenin at pH 3.3 and 25 degrees C or by trypsin (1 microg/ml). The other chimera, rPro/hRen, composed of rat prorenin prosegment and human active renin segment, was activated as slowly as wild-type rat prorenin at pH 3.3 and 25 degrees C or by trypsin (50 microg/ml). These results indicate that the rate of activation of prorenin is predominantly determined by the N-terminal pro-sequence. Plausible mechanisms are discussed.  相似文献   

12.
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.  相似文献   

13.
To study the activation-inactivation mechanism of the renin zymogen, prorenin, a tertiary structural model of human prorenin was constructed using computer graphics and molecular dynamics calculations, based on the pepsinogen structure. This prorenin model shows that the folded prosegment polypeptide can fit into the substrate binding cleft of the renin moiety. The three positively charged residues, Arg 10, Arg 15, and Arg 20, in the prosegment make salt bridges with Asp 225, Glu 331, and Asp 60, respectively, in renin. Arg 43, which is in the processing site, forms salt bridges with the catalytic residues of Asp 81 and Asp 269. These ionic interactions between the prosegment and the renin may contribute to keeping the prorenin structure as an inactive form.  相似文献   

14.
The amino-acid sequence of 96 residues in the N-terminal region of rat pepsinogen I was determined and the first 46 residues were found to constitute the activation peptide segment. There was high degree of homology between the activation segments of rat pepsinogen and some pepsinogens A (pig, cow, Japanese monkey and human). However, the number of residues substituted between rat and the other pepsinogens were considerably larger than those among pepsinogens A. In the N-terminal 24 residues of active pepsin, homology (88%) between rat pepsin and human gastricsin was higher than that (50%) between rat pepsin and pepsin A from human or pig. This strongly suggests that rat pepsin should be classified as pepsin C.  相似文献   

15.
The complete amino acid sequence of monkey pepsinogen A   总被引:2,自引:0,他引:2  
The complete amino acid sequence of pepsinogen A from the Japanese monkey (Macaca fuscata) was determined. After converting the pepsinogen to pepsin by activation, the pepsin moiety was reduced and carboxymethylated, cleaved by cyanogen bromide, and the amino acid sequences of the major fragments determined. These fragments were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of intact pepsin. Since the sequence of the activation segment had been determined previously (Kageyama, T., and Takahashi, K. (1980) J. Biochem. (Tokyo) 88, 9-16), the 373-residue sequence of monkey pepsinogen A was established, consisting of the pepsin moiety of 326 residues and the activation segment of 47 residues. Three disulfide bridges and 1 phosphoserine residue were found to be present in the pepsinogen molecule. The molecular weight was calculated to be 40,027 including the phosphate group. Monkey pepsinogen A showed high homology with human (94% identity) and porcine (86% identity) pepsinogens A.  相似文献   

16.
Our previous chemical modification and cross-linking studies identified some positively charged amino acid residues of cytochrome P450scc that may be important for its interaction with adrenodoxin and for its functional activity. The present study was undertaken to further evaluate the role of these residues in the interaction of cytochrome P450scc with adrenodoxin using site-directed mutagenesis. Six cytochrome P450scc mutants containing replacements of the surface-exposed positively charged residues (Lys103Gln, Lys110Gln, Lys145Gln, Lys394Gln, Lys403Gln, and Lys405Gln) were expressed in E. coli cells, purified as a substrate-bound high-spin form, and characterized as compared to the wild-type protein. The replacement of the surface Lys residues does not dramatically change the protein folding or the heme pocket environment as judged from limited proteolysis and spectral studies of the cytochrome P450 mutants. The replacement of Lys in the N-terminal sequence of P450scc does not dramatically affect the activity of the heme protein. However, mutant Lys405Gln revealed rather dramatic loss of cholesterol side-chain cleavage activity, efficiency of enzymatic reduction in a reconstituted system, and apparent dissociation constant for adrenodoxin binding. The present results, together with previous findings, suggest that the changes in functional activity of mutant Lys405Gln may reflect the direct participation of this amino acid residue in the electrostatic interaction of cytochrome P450scc with its physiological partner, adrenodoxin.  相似文献   

17.
M Tanaka  K Ishimori  I Morishima 《Biochemistry》1999,38(32):10463-10473
To enhance the oxidation activity for luminol in horseradish peroxidase (HRP), we have prepared three HRP mutants by mimicking a possible binding site for luminol in Arthromyces ramosus peroxidase (ARP) which shows 500-fold higher oxidation activity for luminol than native HRP. Spectroscopic studies by (1)H NMR revealed that the chemical shifts of 7-propionate and 8-methyl protons of the heme in cyanide-ligated ARP were deviated upon addition of luminol (4 mM), suggesting that the charged residues, Lys49 and Glu190, which are located near the 7-propionate and 8-methyl groups of the heme, are involved in the specific binding to luminol. The positively charged Lys and negatively charged Glu were introduced into the corresponding positions of Ser35 (S35K) and Gln176 (Q176E) in HRP, respectively, to build the putative binding site for luminol. A double mutant, S35K/Q176E, in which both Ser35 and Gln176 were replaced, was also prepared. Addition of luminol to the HRP mutants induced more pronounced effects on the resonances from the heme substituents and heme environmental residues in the (1)H NMR spectra than that to the wild-type enzyme, indicating that the mutations in this study induced interactions with luminol in the vicinity of the heme. The catalytic efficiencies (V(max)/K(m)) for luminol oxidation of the S35K and S35K/Q176E mutants were 1.5- and 2-fold improved, whereas that of the Q176E mutant was slightly depressed. The increase in luminol activity of the S35K and S35K/Q176E mutants was rather small but significant, suggesting that the electrostatic interactions between the positive charge of Lys35 and the negative charge of luminol can contribute to the effective binding for the luminol oxidation. On the other hand, the negatively charged residue would not be so crucial for the luminol oxidation. The absence of drastic improvement in the luminol activity suggests that introduction of the charged residues into the heme vicinity is not enough to enhance the oxidation activity for luminol as observed for ARP.  相似文献   

18.
It has been proposed that negatively charged amino acids on the surface of reductase and positively charged amino acids on the surface of P450 mediate the binding of both proteins through electrostatic interactions. In this study, we used a site-directed mutagenesis approach to determine a role for two lysine residues (Lys271 and Lys279) of cytochrome P4501A1 in the interaction of P4501A1 with reductase. We prepared two mutants P4501A1Ile271 and P4501A1Ile279 with a mutation of the lysine at positions 271 and 279, respectively. We observed a strong inhibition (>80%) of the 7-ethoxycoumarin and ethoxyresorufin deethylation activity in the reductase-supported system for both mutants. In the cumene hydroperoxide-supported system, P4501A1Ile279 exhibited wild-type activity, but the P4501A1Ile271 mutant activity remained low. The CD spectrum and substrate-binding assay indicated that the secondary structure of P4501A1Ile271 is perturbed. To evaluate further the involvement of these P4501A1 lysine residues in reductase binding, we measured the KM of reductase for wild type and mutants. Both wild type and P4501A1Ile271 reached saturation in the range of reductase concentrations tested with KM values 5.1 and 11.2 pM, respectively. The calculated KM value for P4501A1Ile279 increased 9-fold, 44.4 pM, suggesting that the mutation affected binding of reductase to P4501A1. Stopped-flow spectroscopy was employed to evaluate the effect of mutations on electron transfer from reductase to heme iron. Both wild type and P450Ile279 showed biphasic kinetics with a approximately 40% participation of the fast step in the total activity. On the other hand, only single-phase kinetics for iron reduction was observed for P450Ile271, suggesting that the low activity of this mutant can be attributed not only to major structural changes but also to a disturbance in the electron transport.  相似文献   

19.
The ATP/ADP translocase (Tlc) of Rickettsia prowazekii is a basic protein with isoelectric point (pI)=9.84. It is conceivable, therefore, that basic residues in this protein are involved in electrostatic interactions with negatively charged substrates. We tested this hypothesis by individually mutating all basic residues in Tlc to Cys. Unexpectedly, mutations of only 20 out of 51 basic residues resulted in greater than 80% inhibition of transport activity. Moreover, 12 of 51Cys-substitution mutants exhibited higher than wild-type (WT) activity. At least in one case this up-effect was additive and the double mutant Lys422Cys Lys427Cys transported ATP five-fold better than WT protein. Since in these two single mutants and in the corresponding double mutant K(m)'s were similar to that of WT protein, we conclude that Tlc may have evolved a mechanism that limits the transporter's exchange rate and that at least these two basic residues play a key role in that mechanism. Based on the alignment of 16 Tlc homologs, the loss of activity in the mutants poorly correlates with charge conservation within the Tlc family. Also, despite the presence of three positively charged and one negatively charged intramembrane residues, we have failed to identify potential charge pairs (salt bridges) by either charge reversal or charge neutralization approaches.  相似文献   

20.
Three pepsinogens (pepsinogens 1, 2, and 3) were purified from the gastric mucosa of the North Pacific bluefin tuna (Thunnus thynuus orientalis). Their molecular masses were determined to be 40.4 kDa, 37.8 kDa, and 40.1 kDa, respectively, by SDS/polyacrylamide gel electrophoresis. They contained relatively large numbers of basic residues when compared with mammalian pepsinogens. Upon activation at pH 2.0, pepsinogens 1 and 2 were converted to the corresponding pepsins, in a stepwise manner through intermediate forms, whereas pepsinogen 3 was converted to pepsin 3 directly. The optimal pH of each pepsin for hemoglobin digestion was around 2.5. N-acetyl-L-phenylalanyl-L-diiodotyrosine was scarcely hydrolyzed be each pepsin. Pepstatin, diazoacetyl-DL-norleucine methyl ester in the presence of Cu2+, 1,2-epoxy-3-(p-nitrophenoxy)propane and p-bromophenacyl bromide inhibited each pepsin, although the extent of inhibition by each reagent differed significantly among the three pepsins. The amino acid sequences of the activation segments of these pepsinogens were determined together with the sequences of the NH2-terminal regions of pepsins. Similarities in the activation segment region among the three tuna pepsinogens were rather low, ranging over 28-56%. A phylogenetic tree for 16 aspartic proteinase zymogens including the three tuna pepsinogens was constructed based on the amino acid sequences of their activation segments. The tree indicates that each tuna pepsinogen diverged from a common ancestor of pepsinogens A and C and prochymosin in the early period of pepsinogen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号