首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kombé A  Sirois J  Goff AK 《Steroids》2003,68(7-8):651-658
Estradiol (E2), progesterone (P4), and oxytocin (OT) are important for the initiation of luteolysis in ruminants but the mechanisms involved are still poorly understood. The objective of this study was to determine if duration of exposure of bovine endometrial epithelial cells to P4 affected the response of the cells to E2. Endometrial epithelial cells, from cows at Days 1-3 of the estrous cycle, were cultured for 10, 17, and 21 days in the presence or absence of P4 (100 ng ml(-1)). After culture, each group of cells was incubated for a further 6, 12, 24 or 48 h with or without E2 (100 pg ml(-1)) and then incubated for 6 h with different doses of OT (2, 20, and 200 ng ml(-1)). E2 enhanced OT-stimulated PGF2 alpha secretion in cells cultured with P4 for 17 or 21 days, with a maximum effect after 24-h exposure, but not in cells cultured with P4 for 10 days. To determine the mechanism of action of E2, COX-1 and COX-2 were measured by Western blotting and OTR number was measured by saturation analysis. OT increased COX-2 (P<0.05), but there was no significant effect of E2 on the expression of either COX-1 or COX-2. E2 did, however, increase (P<0.001) the OTR number in cells cultured with P4 for 21 days, whereas it inhibited OTR in cells cultured for 10 days. These data show that E2 can stimulate PGF2 alpha secretion by increasing OTR expression in bovine endometrial cells in vitro, but only after exposure to P4.  相似文献   

2.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   

3.
Ovarian originated oxytocin (OT) is involved in several reproductive process, amongst them its role in the regulation/modulation of the estrous cycle in several species has been demonstrated. Although the systemic role of endometrial originated prostaglandins (PGs), especially prostaglandin F(2α) (PGF(2α)), is equivocal in cats, their possible involvement in the local regulation of uterine events during the estrous cycle is uncertain. We examined the spontaneous and LH-stimulated OT production in cultured luteal cells, the spatial and temporal arrangement of OT receptors (OTR) in a cat endometrium and, finally the effects of OT on PG secretion and prostaglandin-endoperoxide synthase (PTGS2) expression in the feline cultured endometrial cells. Uteri together with ovaries were collected from adult domestic cats (n=27) at different stages of the estrous cycle, after routine ovariohysterectomy procedures. The endometrial and luteal cells were separated enzymatically. Luteinizing hormone (LH) augmented OT secretion in cultured luteal cells 2-fold compared with control (P<0.05). Oxytocin receptor was abundantly expressed in different ovarian structure, as well as in uterine tissues collected at early/developing and mid-luteal phase. The secretion of PGF(2α) by endometrial epithelial cells was increased by OT at a dose 10(-7)M (P<0.001). Atosiban (specific OTR blocker) alone did not affect PG secretion but atosiban in combination with OT abolished the stimulating effect of OT on PGF(2α) secretion. Oxytocin augmented PGE(2) secretion at a dose 10(-7)M and 10(-6)M in the endometrial stromal cells (P<0.001). The treatment with atosiban did not abrogated positive effect of OT on PGE(2) production in the stromal cells. Effect of OT on PTGS2 mRNA expression, the rate-limiting enzyme in PG production, was examined by Real Time-PCR and PTGS2 mRNA expression was significantly affected by OT in both epithelial and stromal cell cultures (P<0.01). The present observations have shown that OT is locally produced by the early/developing corpora lutea and that corpora lutea delivered OT may regulate PG secretion in a cat endometrium especially at early- and mid-diestrus, by affecting PTGS2 mRNA expression.  相似文献   

4.
Luminal epithelial cells of porcine endometrium are unresponsive to oxytocin (OT) in vitro although they express the greatest quantity of OT and receptors for OT in vivo. Therefore, the objective of this study was to determine if oxytocin acted in an autocrine manner on luminal epithelial cells to stimulate prostaglandin (PG)F(2alpha) secretion. Treatment of endometrial explants or enriched luminal epithelial cells with OT antagonist L-366,948 decreased (P < 0.05) basal secretion of PGF(2alpha). Oxytocin increased (P < 0.01) PGF(2alpha) secretion from luminal epithelial cells that were pretreated with 1:5000 or 1:500 OT antiserum for 3 h to immunoneutralize endogenously secreted OT. However, OT only increased (P < 0.05) PGF(2alpha) secretion from glandular epithelial cells when pretreated with 1:500 OT antiserum. Pretreatment with OT antiserum did not alter the ability of OT to induce PGF(2alpha) secretion from stromal cells. Medium conditioned by culture of luminal epithelial cells stimulated (P < 0.05) phospholipase C activity in stromal cells, indicative of the presence of bioactive OT. Oxytocin was secreted by luminal epithelial cells and 33% was released from the apical surface. These results indicate that luminal epithelial cells secrete OT that acts in an autocrine and/or paracrine manner in pig endometrium to stimulate PGF(2alpha) secretion.  相似文献   

5.
Oxytocin (OT) is responsible for the episodic release of luteolytic prostaglandin (PG) F2alpha from the uterus in ruminants. The attenuation of OT-stimulated uterine PGF2alpha secretion by interferon-tau (IFN-tau) is essential for prevention of luteolysis during pregnancy in cows. To better understand the mechanisms involved, the effect of recombinant bovine IFN-tau (rbIFN-tau) on OT-induced PG production and cyclooxygenase-2 (COX-2) and PGF synthase (PGFS) expression in cultured endometrial epithelial cells was investigated. Cells were obtained from cows at Days 1-3 of the estrous cycle and cultured to confluence in RPMI medium supplemented with 5% steroid-free fetal calf serum. The cells were then incubated in the presence or absence of either 100 ng/ml OT or OT+100 ng/ml rbIFN-tau for 3, 6, 12, and 24 h. OT significantly increased PGF2alpha and PGE2 secretion at all time points (p < 0.01), while rbIFN-tau inhibited the OT-induced PG production and reduced OT receptor binding in a time-dependent manner. OT increased the steady-state level of COX-2 mRNA, measured by Northern blot, which was maximal at 3 h (9-fold increase) and then decreased with time (p < 0.01). OT also caused an increase in COX-2 protein, which peaked at 12 h (11-fold increase), as measured by Western blot. Addition of rbIFN-tau suppressed the induction of COX-2 mRNA (89%, p < 0.01) and COX-2 protein (50%, p < 0.01) by OT. OT also increased PGFS mRNA, and this stimulation was attenuated by rbIFN-tau (p < 0.01). To ensure that the decrease in COX-2 was not solely due to down-regulation of the OT receptor, cells were stimulated with a phorbol ester (phorbol 12-myristate 13-acetate; PMA) in the presence and absence of rbIFN-tau. The results showed that rbIFN-tau also decreased PMA-stimulated PG production and COX-2 protein. It can be concluded that rbIFN-tau inhibition of OT-stimulated PG production is due to down-regulation of OT receptor, COX-2, and PGFS.  相似文献   

6.
Bishop CV  Filtz T  Zhang Y  Slayden O  Stormshak F 《Steroids》2008,73(14):1367-1374
The present study was conducted to determine if progesterone (P4) would inhibit oxytocin-stimulated phosphoinositide hydrolysis in COS-7 cells expressing transfected ovine oxytocin receptor (OTR) with little or no nuclear P4 receptor (nPR) protein present. The relative absence of nPR in these cells was confirmed by immunocytochemistry and RT-PCR. To investigate the effects of P4 on oxytocin (OT) signaling, cells were transiently transfected with the ovine OTR. Radioreceptor assay for [(3)H]-OT binding confirmed the presence of a high affinity binding site for OT in transfected cells, while treatment with P4 and GTPgammaS (which uncouples the OTR from the heterotrimeric G-protein) increased the K(d) for OT binding slightly. Cells were then assayed for inositol phosphate hydrolysis 48 h post-transfection. Pre-treatment of cells with P4 for 10 min significantly interfered with rapid (20 min) OT-stimulated inositol trisphosphate (IP(3)) production. This inhibition was specific to P4, because pre-treatment of cells with promegestone (R5020), testosterone, mifepristone (RU 486), or cortisol did not decrease OT-stimulated IP(3) levels. By radioreceptor assay for PR, no measurable specific binding of R5020 was observed for either transfected or non-transfected cells. We conclude that P4 can inhibit OTR-mediated phosphoinositide hydrolysis in COS-7 cells that express little or no nPR protein. These data support a role for a non-genomic action for P4 in OTR signaling via some mechanism other than by binding to a membrane progestin receptor in an immortalized, transfected cell.  相似文献   

7.
8.
OBJECTIVE: Oxytocin (OT) and its corresponding receptor (OTR), synthesized within the pregnant uterus, play a key role in the process of (preterm) labor as part of a paracrine system that regulates symmetrical contractility. In the setting of intrauterine infection, a major cause of preterm labour and birth, decidua serves as a major source of cytokine production. The present study evaluates the time-dependent effect [0-24 h] of the inflammatory cytokine Interleukin-1beta (IL-1beta) treatment on OT signalling and OT stimulated prostaglandin release in primary cultures of human decidua. STUDY DESIGN: Primary cultures of human decidua (n=6) were treated with IL-1beta [5 ng/ml] for 0-24h and or indomethacin [100 microM]--an inhibitor of the prostaglandin synthesis--for 0-24 h or for 24 h. OT peptide expression, OTR binding, Inositol triphosphate production (IP(3)), and arachidonic acid (AA) as well as prostaglandin (PGE(2)) release were measured. RESULTS: IL-1beta transiently reduced cytoplasmic OT peptide at 4-6 h of IL-1beta incubation, while its secretion into the media was increased after 6 h of stimulation. The later was completely blocked by indomethacin. A decrease in OTR mRNA expression and a loss of OTR binding were detected after 8 h and 16 h of IL-1beta treatment, respectively. IL-1beta also decreased IP(3) production and AA release, but significantly enhanced OT mediated PGE(2) production. This effect was completely suppressed by the cyclooxygenase-2 (COX-2) inhibitor NS-398. CONCLUSION: Our data suggest, that IL-1beta indirectly increases OT secretion in primary cultures of human decidua in a time dependent fashion through the production of prostaglandins through COX-2 and that this increase in OT peptide may secondarily down-regulate the OTR and its signalling cascade. These findings might explain the poor effectiveness of oxytocin receptor antagonists as tocolytic agents in the setting of intrauterine infection.  相似文献   

9.
Past studies of uterine prostaglandin (PGs) and pig reproduction have focused on endometrial rather than myometrial PGs. This study documents the synthesis and secretion of myometrial prostaglandins (PGs) in pigs and the involvement of oxytocin (OT) in these processes. Cyclooxygenase-2 (COX-2) expression was similar in myometrial explants from cyclic and pregnant pigs (days 14-16) and OT (10(-7) M) in vitro significantly increased COX-2 protein regardless of reproductive state. Basal expression of prostaglandin E2 synthase (PGES) was higher during pregnancy than during luteolysis. Conversely, prostaglandin F synthase (PGFS) was highest during luteolysis and lower in myometrium from gravid animals. OT had no influence on the expression of PGES and PGFS. In another tissue culture experiment, myometrial slices produced more PGE2 than PGF2alpha regardless of reproductive state of the female. OT stimulated PGE2 production in myometrium harvested during luteolysis and increased PGF2alpha production in all tissues examined. Progesterone (P4; 10(-5) M) blocked stimulatory effect of OT on myometrial PG release. Myometrial OTr mRNA was higher (P=0.03) during luteolysis than during pregnancy. In conclusion: (1) oxytocin increases myometrial COX-2 expression, but does not influence the expression of terminal enzymes of PGs synthesis (PGES and PGFS); (2) porcine myometrium preferentially produces PGs during early pregnancy and secretes more PGE2 than PGF2alpha; (3) myometrial OT and OTr support secretion of PGs from myometrium during luteolysis.  相似文献   

10.
The present study examined the role of intra-luteal prostaglandin (PG) F(2alpha), progesterone (P4) and oxytocin (OT) on the corpus luteum function by using specific hormone antagonists. Luteal cells from the developing CL (days 5-7 of the estrous cycle) were exposed to P4 antagonist (onapristone, OP, 10(-4)M), OT antagonist (atosiban, AT; 10(-6)M) or indomethacin (INDO; 10(-4)M), for 12h and then stimulated with PGF(2alpha) (10(-8)M) for 4h. Pre-treatment of the cells with OP, AT or INDO resulted in an increase in P4 secretion in response to PGF(2alpha). To examine the temporal effects of P4, OT and PGs on P4 secretion, dispersed luteal cells were pre-exposed to OP, AT or INDO for 1, 2, 4, 6 or 12h. Prostaglandin F(2alpha) stimulated P4 secretion (P<0.05) after 2h of pre-exposition. In the microdyalisis study, the spontaneous release of P4 from developing CL tissue was of pulsatile nature with irregular peaks at 1-2h intervals. Treatment with OP increased the number of P4 peaks (P<0.05), whereas AT and INDO significantly reduced the number of P4 peaks detected (P<0.05). Interestingly, INDO completely blocked the pulsatile nature in the release of P4, but it secretion remained stable throughout the experimental period. These results demonstrate that luteal PGF(2alpha), OT, and P4 are components of an autocrine/paracrine intra-ovarian regulatory system responsible for the episodic (pulsatile) release of P4 from the bovine CL during the early luteal phase.  相似文献   

11.
Ovarian steroids modulate uterine receptivity in domestic species. Luteinizing hormone (LH) stimulates prostaglandin (PG)F(2alpha) release from the porcine endometrium. However, the combined action of LH and steroids on PGs secretion has not yet been studied in pigs. The aim of the present study was to examine the effect of estradiol (E(2)) and progesterone (P(4)) on basal and LH-stimulated PGF(2alpha) and PGE(2) secretion and cyclooxygenase-2 (COX-2) protein expression in porcine endometrial stromal cells obtained on days 12-13 of the estrous cycle. Cells were cultured for 48 h in a medium containing charcoal-stripped newborn calf serum alone or supplemented with 10 nM E(2) and/or 50 nM P(4). Then, the cells were incubated for 6 h in the presence or absence of LH (20 ng/ml). Long exposure of stromal cells to steroids had no effect on PGF(2alpha) secretion, but PGE(2) release increased in the presence of E(2) plus P(4) (p<0.05). Pre-incubation of cells with E(2) plus P(4) resulted in enhanced PGF(2alpha) (p<0.05) and PGE(2) (p<0.001) secretion. Moreover, LH increased PG(2alpha) secretion in control (p<0.05) and E(2)-treated stromal cells (p<0.01). LH tended (p=0.07) to elevate PGE(2) release only in cells pre-exposed to E(2) plus P(4). The expression of COX-2 protein was increased by LH (p<0.05), but not by steroids. These results confirm the stimulatory effect of LH on PGF(2alpha) secretion and COX-2 expression in porcine stromal cells before luteolysis. PG release from porcine endometrium seems to be controlled by ovarian steroids, however only E(2)-treated-treated cells responded to LH.  相似文献   

12.
It is assumed that exposure of endometrium to spontaneously secreted luteal hormones stimulates PGF2 alpha secretion and modifies oxytocin (OT) influence on the bovine uterus. At first, the time-dependent effect of endogenous luteal products on endometrial PGF2 alpha secretion was examined. Endometrial strips (100 mg) from slaughtered heifers (Days 11 to 17 of the cycle) were incubated alone or with luteal cells (1 x 10(5) cells/mL). The highest PGF2 alpha secretion by the endometrium under influence of hormones secreted from luteal cells was observed after 12 h of incubation compared with the control (P < 0.001). Then, endometrium (Days 11 to 17) was incubated with luteal cells and concomitantly with antagonists of P4 and OT. The P4 antagonist prevented the stimulatory effect of endogenous luteal hormones on PGF2 alpha secretion (P < 0.05), but the OT antagonist did not. Further, direct effects of exogenous P4, OT and estradiol (E2) on endometrial PGF2 alpha secretion (Days 11 to 17) were examined. Both OT and P4 increased PGF2 alpha secretion (P < 0.05); E2 alone had no effect on PGF2 alpha secretion, but it amplified the P4 effect (P < 0.05). Finally, we studied the effect of endogenous luteal products on OT-stimulated PGF2 alpha secretion from endometrium. When endometrium (Days 11 to 17) was incubated without luteal cells, OT stimulated PGF2 alpha secretion (P < 0.001), whereas incubation of endometrium with luteal cells abolished the stimulatory effect of OT on PGF2 alpha secretion (P < 0.001). These treatments did not affect PGF2 alpha secretion from the endometrium collected on Days 1 to 4. In conclusion, P4 stimulates PGF2 alpha secretion by the endometrium and E2 amplifies this effect. As long as the endometrium is under the influence of P4, ovarian OT does not affect PGF2 alpha secretion.  相似文献   

13.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

14.
15.
Progesterone (P4) was found to interfere directly with the interaction of oxytocin (OT) with its own receptor in bovine endometrium. The aim of these studies was to investigate whether other steroids have a similar effect. Endometrial slices and epithelial endometrial cells from days 14 to 18 of the estrous cycle were used. Progesterone (P4), pregnenolone (P5), 17beta-hydroxyprogesterone (17-OHP4), the P4 receptor antagonist (aP4), and testosterone (T4) did not affect (P > 0.01) basal secretion of PGE2 and PGF 2alpha during 4h of incubation but all steroids inhibited (P < 0.05) OT-stimulated PGF2alpha secretion both from endometrial slices and from dispersed cells. None of the steroids used affected OT-stimulated PGE2 secretion from the cells (P > 0.01). In the next experiment it was studied whether P5, 17-OHP4 and P4 pretreatment for 30min modifies intracellular mobilization of Ca(2+) in response to OT. Oxytocin induced a rapid increase in intracellular Ca(2+)concentrations within 15s, while cells pretreated with steroids this increase occurred later. The total amount of intracellular Ca(2+)concentrations was lower (P < 0.05) in cells preincubated with steroids compared to controls. We conclude that steroids and aP4 are able to suppress OT-stimulated endometrial PGE2 and PGF2alpha secretion via a non-genomic pathway.  相似文献   

16.
Progesterone (P4) has been reported to inhibit oxytocin (OT) binding to its receptor in isolated murine endometrial membranes. The purpose of the present research was to 1). examine the in vivo and in vitro effect of P4 on the binding of OT to its receptor in the ovine endometrium and 2). determine whether the endometrial plasma membranes have high-affinity binding sites for P4. Ovariectomized ewes were pretreated with a sequence of estradiol-17beta (2 days) and P4 (5 days) before being treated with estradiol-17beta plus either vehicle (corn oil), P4, or P4 + mifepristone (RU 486) for 3 consecutive days. Treatment of ewes with 10 mg P4/day for 3 days suppressed binding of OT (P < 0.01) compared with that of controls, whereas concomitant treatment with the progestin antagonist RU 486 (10 mg/day) blocked the effect of P4. Similarly, incubation of endometrial plasma membranes with P4 (5 ng/ml) inhibited binding of OT (P < 0.05), whereas this effect of P4 was blocked by the presence of RU 486 (10 ng/ml). By radioreceptor assay, the endometrial plasma membranes were found to contain a high-affinity binding site for P4 and the progestin agonist promegestone (Kd 1.2 x 10-9 and 1.74 x 10-10M, respectively). Incubation of endometrial plasma membranes with P4 (5 ng/ml) significantly increased the concentration of progestin binding sites. Binding of labeled promegestone (R 5020) was competitively inhibited by excess unlabeled R 5020, P4, RU 486, and OT but not by estradiol-17beta, cortisol, testosterone, and arginine vasopressin. These data suggest a direct suppressive action of P4 on the binding of OT to OT receptors in the ovine endometrial plasma membrane.  相似文献   

17.
Peripubertal gilts (n = 25) were treated with corn oil (CO) or ovarian steroids, one month following an ovariectomy. The first day of treatment was assigned as the first day of the experiment. The gilts received: Group (Gr) I (n = 4)--CO (2 mL x day(-1) from 1st to 12th day), Gr II (n = 4) and Gr III (n = 4)--progesterone (P4; 10 to 100 mg x day(-1) from 1st to 12th day), Gr IV (n = 5)--estradiol benzoate (EB; 400 microg x day(-1) from 1st to 3rd day), Gr V (n = 4) and Gr VI (n = 4)--EB + P4 (EB 400 microg x day(-1) from 1st to 3rd day, 20 microg x day(-1) at 6th and 9th day, 50 microg at 12th day plus P4 10 to 100 mg from 4th to 15th day). All gilts were injected with oxytocin (OT; 20 IU; i.v.) on the following days of the experiment: 13th (Gr I and Gr II), 15th (Gr III and Gr IV), 16th (Gr V) and 18th (Gr VI). Concentrations of the PGF2alpha metabolite--PGFM were determined in blood samples, collected from 30 min before to 120 min after OT injection. Baseline PGFM concentrations (30 min before OT) differed among treatment groups and were the highest in Gr V and Gr VI (P < 0.01 vs. other groups). The magnitude of the PGFM response to OT increased only in four of the five gilts of Gr IV and in three of the four gilts of Gr VI, and it was higher (P = 0.009) in Gr VI than in Gr IV. In the remaining groups, PGFM concentrations did not increase above the baseline in response to OT. The day after OT injection, oxytocin receptors (OTR) were found in the uterine tissues of all animals studied. The lowest OTR concentrations were in Gr I--75.5 +/- 11.2 fmol x mg protein(-1) and the highest in Gr IV--712.9 +/- 86.7 fmol x mg protein(-1); (P < 0.05 vs. other groups). The values of K of OTR differed among groups (P < 0.001) and ranged from 1.62 +/- 0.44 nM in Gr I to 12. 08 +/- 1.9 nM in Gr VI. A positive correlation (r = 0.54; P < 0.01) between plasma E2 and uterine OTR concentrations was observed. In conclusion, E2 and P4 are involved in both PGF2 synthesis/secretion and OTR formation, however, full PGF response to OT does not develop before puberty. Estrogens are evident stimulators of uterine OTR synthesis ingilts.  相似文献   

18.
The objectives of this study were the following: (i) to determine if ovine conceptus secretory products are directly luteotrophic to luteal tissue in vitro and (ii) to determine if ovine conceptus secretory products stimulate endometrial tissue to secrete a luteotropin in vitro. Conceptus-conditioned medium (CCM) was prepared by incubating day 14 ovine conceptuses in minimal essential medium (MEM) for 24 h and harvesting the supernatant. Endometrium-conditioned CCM (E-CCM) and endometrium-conditioned medium (ECM) were prepared by incubating dispersed ovine endometrial cells from day 9-10 cycling ewes in CCM or MEM, respectively, for 16 h and harvesting the supernatants. Media, conditioned as described, were incubated at various dilutions with dispersed luteal cells from day 9-10 cycling ewes for 90 min or 6 h in the absence or presence of 50 ng/mL ovine luteinizing hormone (oLH). CCM did not alter progesterone (P4) production in the 90-min incubation but did increase (p less than 0.05) P4 production in the 6-h incubation (1:4, 1:8, 1:16 dilutions). When coincubated with oLH, CCM did not increase P4 production above that stimulated by oLH alone. The effect of E-CCM was similar to CCM or ECM and did not differ significantly from basal. It is concluded that the day 14 ovine conceptus does secrete a factor that is able to directly stimulate P4 secretion by luteal cells in a 6-h, but not a 90-min, incubation. Conceptus secretory products did not stimulate endometrial cells to secrete a luteotropin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Studies of the response of RAW264.7 cells (RAW) to lipopolysaccharide (LPS) were carried out to determine why these cells do not demonstrate the prostaglandin (PG)-dependent autocrine regulation of tumor necrosis factor-alpha (TNF-alpha) secretion observed in primary resident peritoneal macrophages (RPMs). The major cyclooxygenase (COX) product of LPS-stimulated RAW was PGD2, with lesser amounts of PGE2. LPS-treated RAW produced PGs more slowly and reached their maximal PG synthetic rate later than did LPS-treated RPMs, as a result of lower constitutive COX-1 expression and a slower rate of COX-2 induction. Cytosolic phospholipase A2 and levels of free arachidonic acid were similar in RAW and RPMs. In contrast to RPMs, LPS-treated RAW produced high quantities of TNF-alpha, which were not altered in the presence of COX inhibitors. This failure of endogenous PGs to suppress TNF-alpha secretion was explained by the absence of the prostaglandin D2 receptor and the low levels of PGE2 produced during the first 2 h of the LPS response. These studies demonstrate that autocrine regulation of TNF-alpha secretion in response to LPS is greatly facilitated by a COX-1-mediated rapid accumulation of PGs as well by a correspondence between the PGs produced and the receptors expressed by the cells.  相似文献   

20.
Oxytocin (OT) is a potent uterine agonist. Its receptor (OTR) is a G protein-coupled receptor that is downregulated by prolonged exposure to OT. We hypothesized that activation of PKC mediated this OT-induced decrease in OTR expression. Diminished PKC activity in late pregnancy could underlie the increased expression of uterine OTR preceding labor onset. Using cell cultures of transformed human uterine myocytes, we determined the effects of PKC agonists and antagonists on the expression of OTR. We also explored the effects of overexpression of activator protein-1 (AP-1, a mediator of many PKC- and phorbol ester-induced effects) using adenoviral expression vectors for the AP-1 subunits c-Jun and c-Fos. Stimulation of PKC using the phorbol ester 12-O-tetradecanoylphorbol 13-acetate caused a rapid, significant (P < or = 0.05) increase in c-Jun and c-Fos concentrations but a significant decrease in mRNA for OTR within 6 h followed by a significant decrease in OT binding by 24 h. Adenoviral infection of the cells with expression vectors for c-Jun and c-Fos increased the AP-1 subunits but had no effect on OTR expression. Furthermore, there were no changes in c-Fos or c-Jun levels in human intrauterine tissues around the time of labor onset, as measured by Western analyses. We conclude that phorbol ester treatment decreases OTR expression, likely through a mechanism that does not involve AP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号