首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restriction. Efficient transformation allowed the demonstration of developmental regulation of cloned crystal protein genes in B. thuringiensis.  相似文献   

2.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

3.
The efficiency of bacteriophages CP-54 and CP-55 plating on Bacillus thuringiensis var. kumantoensis H18 (Kum) is decreased about 10-fold as compared with the efficiency of plating on Bacillus thuringiensis var. galleriae H5 (Gal). Bacteriophages having propagated for one cycle in Kum cells might be further grown in this strain without growth restriction. Two site-specific restriction enzymes isolated from Bacillus thuringiensis var. kumantoensis were designated BtkI and BtkII. The endonuclease BtkI recognises the same nucleotide sequence CGCG in DNA as recognised by the restriction endonuclease FnuDII; BtkII recognises the same nucleotide sequence GATC as the endonuclease Sau3A.  相似文献   

4.
The transfer of plasmids by mating from four Bacillus thuringiensis subspecies to Bacillus anthracis and Bacillus cereus recipients was monitored by selecting transcipients which acquired plasmid pBC16 (Tcr). Transcipients also inherited a specific large plasmid from each B. thuringiensis donor at a high frequency along with a random array of smaller plasmids. The large plasmids (ca. 50 to 120 megadaltons), pXO13, pXO14, pXO15, and pXO16, originating from B. thuringiensis subsp. morrisoni, B. thuringiensis subsp. toumanoffi, B. thuringiensis subsp. alesti, and B. thuringiensis subsp. israelensis, respectively, were demonstrated to be responsible for plasmid mobilization. Transcipients containing any of the above plasmids had donor capability, while B. thuringiensis strains cured of each of them were not fertile, indicating that the plasmids confer conjugation functions. Confirmation that pXO13, pXO14, and pXO16 were self-transmissible was obtained by the isolation of fertile B. anthracis and B. cereus transcipients that contained only pBC16 and one of these plasmids. pXO14 was efficient in mobilizing the toxin and capsule plasmids, pXO1 and pXO2, respectively, from B. anthracis transcipients to plasmid-cured B. anthracis or B. cereus recipients. DNA-DNA hybridization experiments suggested that DNA homology exists among pXO13, pXO14, and the B. thuringiensis subsp. thuringiensis conjugative plasmids pXO11 and pXO12. Matings performed between strains which each contained the same conjugative plasmid demonstrated reduced efficiency of pBC16 transfer. However, in many instances when donor and recipient strains contained different conjugative plasmids, the efficiency of pBC16 transfer appeared to be enhanced.  相似文献   

5.
Efficiency of bacteriophage Tp4 plating on Bacillus thuringiensis var. canadensis H5 (Can) is decreased 10(7)-fold as compared with the efficiency of plating on Bacillus thuringiensis var. galleriae H5 (Gal). Bacteriophage Tp4 having propagated for one cycle in Can cells might be further grown in this strain without restriction. The sitespecific restriction endonuclease BtcI isolated from Bacillus thuringiensis var. canadensis recognises the same nucleotide sequence GATC in DNA as recognised by restriction endonuclease Sau3A.  相似文献   

6.
S A Showsh  R E Andrews 《Plasmid》1992,28(3):213-224
Pregrowth of the donor on medium containing tetracycline increased conjugative transposition of Tn916 and the transposon-dependent mobilization of pC194 19- to 119-fold in matings between Bacillus subtilis and Bacillus thuringiensis subsp. israelensis. Tn916 and pC194 transferred independently under these conditions. When Enterococcus faecalis was the donor and B. thuringiensis subsp. israelensis the recipient, pregrowth in tetracycline increased the conjugative transposition frequency by approximately 15-fold. Tetracycline-enhanced conjugation appeared during matings as short as 3 h in length. Pregrowth in tetracycline did not enhance conjugation in Bacillus sphaericus x B. thuringiensis subsp. israelensis or B. thuringiensis subsp. israelensis x B. subtilis matings. Incorporation of tetracycline into the mating medium, at concentrations that did not inhibit growth of the B. thuringiensis subsp. israelensis recipient, resulted in conjugation frequencies similar to those obtained by pregrowth of the B. subtilis donors in antibiotic-containing medium. The data suggest stimulation of donor function by tetracycline.  相似文献   

7.
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

8.
Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments.  相似文献   

9.
Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores.  相似文献   

10.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

11.
Bacillus thuringiensis spacer regions between the 16S and 23S rRNAs were amplified with conserved primers, designated 19-mer and 23-mer primers. A spacer region of 144 bp was determined for all of 6 B. thuringiensis strains, 7 B. thuringiensis subspecies, and 11 B. thuringiensis field isolates, as well as for the closely related species Bacillus cereus and Bacillus anthracis. Computer analysis and alignment of nucleotide sequences identified three mutations and one deletion in the intergenic spacer region (ISR) of B. thuringiensis subsp. kurstaki HD-1 when compared with ISR sequences from other subspecies. The same differences were identified between the ISR of B. thuringiensis strains and the ISR of B. cereus and B. anthracis. These minor differences do not seem to be sufficient to allow the design of a species-specific oligonucleotide probe.  相似文献   

12.
张宏宇  邓望喜  喻子牛 《遗传》2000,22(2):125-128
苏云金芽胞杆菌因为产生伴胞晶体而在表型上区别于其他近缘种,而伴胞晶体具有杀虫活性而受到人们的普遍关注和重视。本文通过杀虫晶体蛋白及其基因型,以及携带杀虫晶体蛋白基因的质粒类型在苏云金芽胞杆菌中的不同分布阐述了杀虫晶体蛋白及其基因的多态性。 Abstract: Bacillus thuringiensis is phenotypically different from other Bacillus species,which are very closely related to B. thuringiensis.only by the presence of crystal protein,and is studied systematically because of insecticidal activity of crystal protein.In the aper,we reviewed genetic diversity of insecticidal crystal protein and its genotype by analysing the type of crystal protein,cry gene and plasmid bome cry gene and their distribution inB. thuringiensis.  相似文献   

13.
In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical to those of strains isolated from the commercial products used. Work processes (i.e., spraying) correlated with the presence of B. thuringiensis in the fecal samples (10(2) to 10(3) CFU/g of feces). However, no gastrointestinal symptoms correlated with the presence of B. thuringiensis in the fecal samples.  相似文献   

14.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

15.
Electron microscopy of Bacillus thuringiensis subsp. kyushuensis revealed that the parasporal inclusions are composed of a homogeneous center surrounded by a thick, electron-dense coating. Antibodies directed against the 135- and 65-kilodalton B. thuringiensis subsp. israelensis peptides cross-reacted with the 70- and 26-kilodalton peptides, respectively, of B. thuringiensis subsp. kyushuensis.  相似文献   

16.
我国森林土壤中苏云金芽孢杆菌生态分布的研究   总被引:3,自引:0,他引:3  
从我国8个森林立地带(寒温带、中温带、暖温带、北亚热带、中亚热带、南亚热带、高原亚热带、热带)所属的13个自然保护区,采集了0—5cm土层林下土壤样品384个.测定了土壤pH、水分和养分.从中分离观察芽孢杆菌菌落1873个,分离出苏云金芽孢杆菌79株,并对其所属亚种进行了初步鉴定.其平均出土率和分离率分别为14.32%和4.21%.研究了芽孢杆菌和苏云金芽孢杆菌在森林土壤中生态分布的规律及苏云金芽孢杆菌对6种昆虫的室内毒力测定,从中筛选出不少的高效菌株.为研究苏云金芽孢杆菌在我国森林生态系中资源的保护、开发和利用,具有重要意义.  相似文献   

17.
The possibility of homologous and heterologous transception of Cry+ plasmids in Bacillus thuringiensis is demonstrated. Cry+ plasmids from crystal bearing strain of Bacillus thuringiensis were transferred into acrystalline strain belonging to H5 serotype by mutual incubation. The donor strain was previously marked by the transmissive plasmid pAM beta 1 coding for erythromycin and lincomycin resistance. The transcipients having acquired the ability to synthesize delta-endotoxin were referred to H5 serotype due to their phenotype. By analogous method Cry+ plasmid was transferred from Bacillus thuringiensis to Bacillus cereus. Bacillus cereus strain GP7 was used as a recipient strain resistant to tetracycline. The presence of delta-endotoxin in transcipients was confirmed by bioprobes and immunoenzyme assay. To prove the transfer of Cry+ plasmid the plasmid profiles of the parent strains and transcipients have been analyzed. The formation of cellular contacts during mutual incubation of Bacillus thuringiensis and Bacillus cereus strains was demonstrated by electron microscopic study of ultrafine cuts.  相似文献   

18.
A complete physical map of a Bacillus thuringiensis chromosome.   总被引:16,自引:4,他引:12       下载免费PDF全文
Bacillus thuringiensis is the source of the most widely used biological pesticide, through its production of insecticidal toxins. The toxin genes are often localized on plasmids. We have constructed a physical map of a Bacillus thuringiensis chromosome by aligning 16 fragments obtained by digestion with the restriction enzyme NotI. The fragments ranged from 15 to 1,350 kb. The size of the chromosome was 5.4 Mb. The NotI DNA fingerprint patterns of 12 different B. thuringiensis strains showed marked variation. The cryIA-type toxin gene was present on the chromosome in four strains, was extrachromosomal in four strains, and was both chromosomal and extrachromosomal in two strains. A Tn4430 transposon probe hybridized to 5 of the 10 cryIA-positive chromosomal fragments, while cryIA and the transposon often hybridized to different extrachromosomal bands. Ten of the strains were hemolytic when grown on agar plates containing human erythrocytes. Nine of the strains were positive when assayed for the presence of Bacillus cereus enterotoxin. We conclude that B. thuringiensis is very closely related to B. cereus and that the distinction between B. cereus and B. thuringiensis should be reconsidered.  相似文献   

19.
A gene encoding a 72,357-dalton (Da) crystal protein of Bacillus thuringiensis var. israelensis was isolated from a native 75-MDa plasmid by the use of a gene-specific oligonucleotide probe. Bacillus megaterium cells harboring the cloned gene (cryD) produced significant amounts of the 72-kDa protein (CryD), and the cells were highly toxic to mosquito larvae. In contrast, cryD-containing Escherichia coli cells did not produce detectable levels of the 72-kDa CryD protein. The sequence of the CryD protein, as deduced from the sequence of the cryD gene, was found to contain regions of homology with two previously described B. thuringiensis crystal proteins: a 73-kDa coleopteran-toxic protein and a 66-kDa lepidopteran- and dipteran-toxic protein of B. thuringiensis subsp. kurstaki. A second gene encoding the B. thuringiensis subsp. israelensis 28-kDa crystal protein was located approximately 1.5 kilobases upstream from and in the opposite orientation to the cryD gene.  相似文献   

20.
A pulsed-field gel electrophoresis (PFGE) method was developed for discriminating Bacillus anthracis from B. cereus and B. thuringiensis. A worldwide collection of 25 B. anthracis isolates showed high-profile homology, and these isolates were unambiguously distinguished from B. cereus and B. thuringiensis isolates by cluster analysis of the whole-genome macrorestriction enzyme digestion patterns generated by NotI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号