首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have isolated a hop-sensitive variant of the beer spoilage bacterium Lactobacillus lindneri DSM 20692. The variant lost a plasmid carrying two contiguous open reading frames (ORF s) designated horB(L) and horC(L) that encode a putative regulator and multidrug transporter presumably belonging to the resistance-nodulation-cell division superfamily. The loss of hop resistance ability occurred with the loss of resistance to other drugs, including ethidium bromide, novobiocin, and cetyltrimethylammonium bromide. PCR and Southern blot analysis using 51 beer spoilage strains of various species of lactic acid bacteria (LAB) revealed that 49 strains possessed homologs of horB and horC. No false-positive results have been observed for nonspoilage LAB or frequently encountered brewery isolates. These features are superior to those of horA and ORF 5, previously reported genetic markers for determining the beer spoilage ability of LAB. It was further shown that the combined use of horB/horC and horA is able to detect all 51 beer spoilage strains examined in this study. Furthermore sequence comparison of horB and horC homologs identified in four different beer spoilage species indicates these homologs are 96.6 to 99.5% identical, which is not typical of distinct species. The wide and exclusive distribution of horB and horC homologs among beer spoilage LAB and their sequence identities suggest that the hop resistance ability of beer spoilage LAB has been acquired through horizontal gene transfer. These insights provide a foundation for applying trans-species genetic markers to differentiating beer spoilage LAB including previously unencountered species.  相似文献   

2.
The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N'-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the alpha- and beta-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.  相似文献   

3.
AIMS: To evaluate spoilage and identify lactic acid bacteria (LAB) from spoilage associations of cooked and brined shrimps stored under modified atmosphere packaging (MAP) at 0, 5, 8, 15 and 25 degrees C. METHODS AND RESULTS: Bacterial isolates (102) from spoilage associations of cooked and brined MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE electrophoresis of whole cell proteins. Selected clusters of LAB isolates were analysed by plasmid profiling, pulsed field gel electrophoresis and 16S rRNA gene sequencing. Enterococcus faecalis was identified in spoilage associations at 15 degrees C and 25 degrees C, and its metabolic activity corresponded to chemical changes in spoiled products. Carnobacterium divergens, a non-motile Carnobacterium sp. nov. and Lactobacillus curvatus were the LAB species observed in spoilage associations of products stored at 0 degrees C, 5 degrees C and 8 degrees C. CONCLUSIONS: Enterococcus spp. and Carnobacterium spp. were the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP shrimps to be identified at the species level.  相似文献   

4.
We have isolated a hop-sensitive variant of the beer spoilage bacterium Lactobacillus lindneri DSM 20692. The variant lost a plasmid carrying two contiguous open reading frames (ORF s) designated horBL and horCL that encode a putative regulator and multidrug transporter presumably belonging to the resistance-nodulation-cell division superfamily. The loss of hop resistance ability occurred with the loss of resistance to other drugs, including ethidium bromide, novobiocin, and cetyltrimethylammonium bromide. PCR and Southern blot analysis using 51 beer spoilage strains of various species of lactic acid bacteria (LAB) revealed that 49 strains possessed homologs of horB and horC. No false-positive results have been observed for nonspoilage LAB or frequently encountered brewery isolates. These features are superior to those of horA and ORF 5, previously reported genetic markers for determining the beer spoilage ability of LAB. It was further shown that the combined use of horB/horC and horA is able to detect all 51 beer spoilage strains examined in this study. Furthermore sequence comparison of horB and horC homologs identified in four different beer spoilage species indicates these homologs are 96.6 to 99.5% identical, which is not typical of distinct species. The wide and exclusive distribution of horB and horC homologs among beer spoilage LAB and their sequence identities suggest that the hop resistance ability of beer spoilage LAB has been acquired through horizontal gene transfer. These insights provide a foundation for applying trans-species genetic markers to differentiating beer spoilage LAB including previously unencountered species.  相似文献   

5.
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.  相似文献   

6.
Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.  相似文献   

7.
AIMS: To identify and examine the diversity of predominant lactic acid bacteria (LAB) in koko and koko sour water (KSW) from different Ghanaian production sites with regard to pattern of fermentation (API 50 CHL), genotype, antimicrobial activity, and resistance to low pH and bile salts. METHODS AND RESULTS: In total 215 LAB were isolated from koko and KSW. The isolates were identified using intergenic transcribed spacers (ITS)-PCR restriction fragment length polymorphism (RFLP), API 50 CHL, restriction enzyme analysis with pulsed-field gel electrophoresis (REA-PFGE) and sequencing of the 16S rRNA gene. The dominating micro-organisms in koko was found to be Weisella confusa and Lactobacillus fermentum, followed by Lact. salivarius and Pediococcus spp. Chemometric data analysis were used to link the LAB species to the different production stages and production sites. At intra-species level the isolates were found to have a great diversity. The isolates were investigated for antimicrobial activity using agar diffusion assays, and acid and bile tolerance. Most isolates showed low levels of antimicrobial activity towards the indicator strain Listeria innocua, but not towards the bacteriocin-sensitive Lact. sakei. Growth of all LAB isolates was unaffected by the presence of 0.3% (v/v) oxgall bile. The isolates were able to survive, but were not able to grow in growth medium adjusted to pH 2.5. CONCLUSIONS: The dominating LAB of koko and KSW were W. confusa and Lact. fermentum showing a pronounced taxonomic biodiversity at sub-species level between stages within the production as well as between production sites. Other species observed in KSW were Lact. salivarius, Ped. pentosaceus, Ped. acidilactici and Lact. paraplantarum. They occurred in levels of 108 CFU ml-1 in fresh KSW and showed uniform antimicrobial activity, and acid and bile tolerance. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study gives a detailed picture of the taxonomy and diversity of LAB in an African-fermented millet product that may have potential as a probiotic product for the local population. The chemometric tools Principal Component Analysis and anova Partial Least Squares Regression were proven to be useful in the analysis of microbial groupings and associations with specific sites and stages in the production of koko and KSW.  相似文献   

8.
AIMS: Understanding spoilage caused by different types of spoilage organisms, associated with vacuum-packaged sliced cooked meat products (CMP). METHODS AND RESULTS: First, strains were characterized in a broth at 7 degrees C under anaerobic conditions to compare their growth rate, acidifying character and metabolite production under conditions simulating refrigerated vacuum-packaged conditions. Brochotrix thermosphacta grew faster than the lactic acid bacteria (LAB). Within the group of the LAB, all strains grew fast except Leuconostoc mesenteroides subsp. dextranicum and Leuconostoc carnosum. Secondly, the organisms were inoculated on a model cooked ham to better understand the relationship between spoilage, microbial growth, pH, metabolite production and accompanying sensory changes. Most rapidly growing strains were Leuc. mesenteroides subsp. mesenteroides followed by B. thermosphacta, while Leuc. mesenteroides subsp. dextranicum and Leuc. carnosum grew very slowly compared with the other LAB. Brochotrix thermosphacta caused sensory deviations at a lower cell number compared with the LAB. The related pH changes, metabolite production and sensory perception are presented. CONCLUSIONS: In this pure culture study, B. thermosphacta and Leuc. mesenteroides subsp. mesenteroides had the highest potential to cause rapid spoilage on CMP. SIGNIFICANCE AND IMPACT OF THE STUDY: A systematic study on the behaviour of spoilage organisms on a model cooked ham to establish the relationship between microbial growth, pH, metabolite formation and organoleptic deviations.  相似文献   

9.
AIMS: Lactic acid bacteria (LAB) were isolated and sequenced from the faeces of healthy dogs. Five of these strains were selected and further characterized to clarify the potential of these strains as probiotics for canine. METHODS AND RESULTS: LAB were found in 67% (14/21) of the canine faeces samples when plated on Lactobacilli Selective Media without acetic acid. Out of 13 species identified with partial 16S rRNA gene sequencing, Lactobacillus fermentum LAB8, L. mucosae LAB12, L. rhamnosus LAB11, L. salivarius LAB9 and Weissella confusa LAB10 were selected as candidate probiotic strains based on their frequency, quantity in faeces, growth density, acid tolerance and antimicrobial activity. The minimal inhibitory concentration values of these isolates were determined for 14 antibiotics. L. salivarius LAB9, W. confusa LAB10 and L. mucosae LAB12 were viable in pH 2 for 4 h (mLBS), indicating tolerance to acidity and thus the potential to survive in gastrointestinal tract of the canine. The LAB8-LAB12 strains showed antimicrobial activity against Micrococcus luteus A1 NCIMB86166. CONCLUSIONS: Thirteen different LAB species were found from the faecal microbiota of the healthy canines. Five acid tolerant and antimicrobially active LAB strains with the capacity to grow to high densities both aerobically and anaerobically were chosen to serve as candidate probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: The selected LAB strains are among the first host-specific LAB with antimicrobial activity isolated from canines that could serve as potential probiotics for canine use.  相似文献   

10.
AIMS: To identify lactic acid bacteria (LAB) of porcine intestinal origin with anti-Salmonella activity. METHODS AND RESULTS: Samples were obtained from pig faeces and caeca and screened for the presence of anti-Salmonella LAB. The 11 most promising isolates were identified as belonging to the genera Lactobacillus and Pediococcus. The LAB exhibited large variation in their ability to survive in simulated gastric juice at pH 1.85. While Lactobacillus johnsonii species survived at levels of 80% for up to 30 min, Lactobacillus pentosus species declined to <0.001% in that time. All isolates tolerated porcine bile at a concentration of 0.3% (w/v), with some isolates capable of growth in the presence of up to 5% (w/v) bile. The ability of the LAB isolates to prevent Salmonella invasion of intestinal epithelial HT-29 cells varied, with reductions of between 30% (Lact. pentosus) and 80% (Lactobacillus murinus spp.) observed. CONCLUSIONS: LAB of porcine origin were observed to survive simulated passage through the GIT and inhibit growth of Salmonella and its invasion of the intestinal epithelium. SIGNIFICANCE AND IMPACT OF THE STUDY: The data demonstrate that some porcine intestinal LAB isolates may offer potential as probiotics for the reduction of Salmonella carriage in pigs.  相似文献   

11.
Analysis of S-layer proteins of Lactobacillus brevis   总被引:2,自引:0,他引:2  
Abstract The presence of S-layer proteins in Lactobacillus brevis was examined by SDS-PAGE analysis. Thirty six out of a total of 41 L. brevis strains possessed S-layer proteins of molecular masses ranging from 38 to 55 kDa. Western blot analysis using antisera raised against whole cells of S-layer protein-carrying strains demonstrated the heterogeneity of L. brevis S-layer proteins. No clear relationship was observed between the presence of S-layer proteins or their immunological characteristics and the physiological activity of L. brevis as a beer spoilage organism.  相似文献   

12.
Lactic acid bacteria (LAB) are found in a great variety of habitats, including grape must and wines. There is a close relationship between the species of LAB which develop during fermentation and the eventual quality of the wine. For these reasons analytical techniques allowing fast and reliable identification of wine LAB are needed. In this work a simple and accurate protocol for identifying species of LAB isolated from grape must and wine is presented. This protocol is based on the amplification, directly from colony, of 16S rDNA and later digestion with one of the following restriction enzymes BfaI, MseI and AluI. A sequential use of the three enzymes is proposed to simplify LAB wine identification, first MseI, then BfaI and finally, if necessary, AluI digestion. The technique was able to discriminate 32 of the 36 LAB reference species tested and allowed the identification of 342 isolates from musts and wines. The isolates belonged to the species: Lactobacillus brevis, L. collinoides, L. coryniformis, L. bilgardii, L. mali, L. paracasei, Leuconostoc mesenteroides, Oenococcus oeni, Pediococcus parvulus and P. pentosaceus.  相似文献   

13.
AIMS: To quantify the ability of 136 lactic acid bacteria (LAB), isolated from wine, to produce histamine and to identify the bacteria responsible for histamine production in wine. METHODS AND RESULTS: A qualitative method based on pH changes in a plate assay was used to detect wine strains capable of producing high levels of histamine. Two quantitative, highly sensitive methods were used, an enzymatic method and HPLC, to quantify the histamine produced by LAB. Finally, an improved PCR test was carried out to detect the presence of histidine decarboxylase gene in these bacteria. The species exhibiting the highest frequency of histamine production is Oenococcus oeni. However, the concentration of histamine produced by this species is lower than that produced by strains belonging to species of Lactobacillus and Pediococcus. A correlation of 100% between presence of histidine decarboxylase gene and histamine production was observed. Wines containing histamine were analysed to isolate and characterize the LAB responsible for spoilage. CONCLUSIONS: Oenococcus was able to synthesize low concentrations of histamine in wines, while Pediococcus parvulus and Lactobacillus hilgardii have been detected as spoilage, high histamine-producing bacteria in wines. SIGNIFICANCE AND IMPACT OF THE STUDY: Information regarding histamine-producing LAB isolated from wines can contribute to prevent histamine formation during winemaking and storage.  相似文献   

14.
AIMS: Species-specific PCR was applied to identify Lactobacillus brevis and the sensitivity and the specificity of the protocol were determined. METHODS AND RESULTS: Strains of Lact. brevis obtained from foods, particularly dairy products, and various strain collections, were identified by PCR using primers which amplified a 1340 bp fragment within the 16S rRNA gene. The PCR product was obtained after amplification of all the Lact. brevis strains tested; the size of the amplicon was as expected. No PCR products were observed after amplification from DNA of several lactic acid bacteria (LAB) species. CONCLUSIONS: A PCR method was optimized to identify Lact. brevis. The protocol was highly efficient and sensitive. SIGNIFICANCE AND IMPACT OF THE STUDY: Conventional phenotypic methods often lead to ambiguous identification of LAB species belonging to Lact. brevis. The proposed protocol is sensitive, specific, and can be applied to total DNA extracted by use of chelating matrix with loss of neither sensitivity nor specificity.  相似文献   

15.
Resistance to hops is a prerequisite for the capability of lactic acid bacteria to grow in beer and thus cause beer spoilage. Bactericidal hop compounds, mainly iso-alpha-acids, are described as ionophores which exchange H+ for cellular divalent cations, e.g., Mn2+, and thus dissipate ion gradients across the cytoplasmic membrane. The acid stress response of Lactobacillus brevis TMW 1.465 and hop adaptation in its variant L. brevis TMW 1.465A caused changes at the level of metabolism, membrane physiology, and cell wall composition. To identify the basis for these changes, a proteomic approach was taken. The experimental design allowed the discrimination of acid stress and hop stress. A strategy for improved protein identification enabled the identification of 84% of the proteins investigated despite the lack of genome sequence data for this strain. Hop resistance in L. brevis TMW 1.465A implies mechanisms to cope with intracellular acidification, mechanisms for energy generation and economy, genetic information fidelity, and enzyme functionality. Interestingly, the majority of hop-regulated enzymes are described as manganese or divalent cation dependent. Regulation of the manganese level allows fine-tuning of the metabolism, which enables a rapid response to environmental (stress) conditions. The hop stress response indicates adaptations shifting the metabolism into an energy-saving mode by effective substrate conversion and prevention of exhaustive protein de novo synthesis. The findings further demonstrate that hop stress in bacteria not only is associated with proton motive force depletion but obviously implies divalent cation limitation.  相似文献   

16.
Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.  相似文献   

17.
酒花苦味酸是构成啤酒风味的重要组分,也是啤酒生产过程中的天然抑菌剂,酒花苦味酸通过降低pH梯度而抑制啤酒花敏感菌生长。研究发现,啤酒花抗性菌是通过膜上转运蛋白将酒花苦味酸泵出细胞外,以降低膜上的质子流速,维持了细胞内的pH梯度。结合近年来酒花抗性相关研究结果,讨论了细胞膜上酒花抗性相关组分与酒花抗性间的关系,提出了酒花抗性机制的模型。  相似文献   

18.
AIMS: Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. METHODS AND RESULTS: Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). CONCLUSIONS: Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.  相似文献   

19.
Lactic acid bacteria (LAB) associated with gaseous spoilage of modified-atmosphere-packaged, raw, tomato-marinated broiler meat strips were identified on the basis of a restriction fragment length polymorphism (RFLP) (ribotyping) database containing DNAs coding for 16S and 23S rRNAs (rDNAs). A mixed LAB population dominated by a Leuconostoc species resembling Leuconostoc gelidum caused the spoilage of the product. Lactobacillus sakei, Lactobacillus curvatus, and a gram-positive rod phenotypically similar to heterofermentative Lactobacillus species were the other main organisms detected. An increase in pH together with the extreme bulging of packages suggested a rare LAB spoilage type called "protein swell." This spoilage is characterized by excessive production of gas due to amino acid decarboxylation, and the rise in pH is attributed to the subsequent deamination of amino acids. Protein swell has not previously been associated with any kind of meat product. A polyphasic approach, including classical phenotyping, whole-cell protein electrophoresis, 16 and 23S rDNA RFLP, 16S rDNA sequence analysis, and DNA-DNA reassociation analysis, was used for the identification of the dominant Leuconostoc species. In addition to the RFLP analysis, phenotyping, whole-cell protein analysis, and 16S rDNA sequence homology indicated that L. gelidum was most similar to the spoilage-associated species. The two spoilage strains studied possessed 98.8 and 99.0% 16S rDNA sequence homology with the L. gelidum type strain. DNA-DNA reassociation, however, clearly distinguished the two species. The same strains showed only 22 and 34% hybridization with the L. gelidum type strain. These results warrant a separate species status, and we propose the name Leuconostoc gasicomitatum sp. nov. for this spoilage-associated Leuconostoc species.  相似文献   

20.
AIMS: The aim of this study was to perform a detailed characterization of bacteriocins produced by lactic acid bacteria (LAB) isolated from malted barley. METHODS AND RESULTS: Bacteriocin activities produced by eight LAB, isolated from various types of malted barley, were purified to homogeneity by ammonium sulphate precipitation, cation exchange, hydrophobic interaction and reverse-phase liquid chromatography. Molecular mass analysis and N-terminal amino acid sequencing of the purified bacteriocins showed that four non-identical Lactobacillus sakei strains produced sakacin P, while four Leuconostoc mesenteroides strains were shown to produce bacteriocins highly similar or identical to leucocin A, leucocin C or mesenterocin Y105. Two of these bacteriocin-producing strains, Lb. sakei 5 and Leuc. mesenteroides 6, were shown to produce more than one bacteriocin. Lactobacillus sakei 5 produced sakacin P as well as two novel bacteriocins, which were termed sakacin 5X and sakacin 5T. The inhibitory spectrum of each purified bacteriocin was analysed and demonstrated that sakacin 5X was capable of inhibiting the widest range of beer spoilage organisms. CONCLUSION: All bacteriocins purified in this study were class II bacteriocins. Two of the bacteriocins have not been described previously in the literature while the remaining purified bacteriocins have been isolated from environments other than malted barley. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents a thorough analysis of bacteriocin-producing LAB from malt and demonstrates, for the first time, the variety of previously identified and novel inhibitory peptides produced by isolates from this environment. It also highlights the potential of these LAB cultures to be used as biological controlling agents in the brewing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号