首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
森林凋落物淋溶中的溶解有机物与紫外-可见光谱特征   总被引:5,自引:0,他引:5  
对格氏栲(Castanopsis kawakamii)和杉木(Cunninghamia lanceolat)人工林新近凋落物、半分解层(F层)和分解层(H层)凋落物进行室内模拟淋洗实验,研究了凋落物淋溶过程中溶解有机碳(DOC)浓度变化及紫外-可见(UV-Vis.)光谱特征.结果表明,格氏栲和杉木人工林新近凋落物淋出液的DOC浓度较低,F层淋出液的DOC浓度较高;格氏栲凋落物淋出液的DOC浓度基本上随淋溶次数的增加而降低,杉木的则先升后降.淋出液中溶解有机物(DOM)的紫外吸收值均随波长的增加而减小,且UV-Vis.吸收曲线均在200nm附近出现吸收峰,不同来源DOM的E240/E420存在显著差异;同一样品各次淋出液的DOC浓度与E200有很好的线性关系(P2>0.90),据此,可用E200值估算DOC浓度.  相似文献   

2.
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, USA, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the addition of woody debris increased dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; percent hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and less variable C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among soil solutions from different detrital treatments in the field, suggesting that microbial processing of DOM leachate in the field consumed easily degradable components, thus equalizing leachate chemistry among treatments. Total dissolved N leaching from plots with intact roots was very low (0.17 g m−2 year−1), slightly less than measured deposition to this very unpolluted forest (~s 0.2 g m−2 year−1). Total dissolved N losses showed significant increases in the two treatments without roots whereas concentrations of DOC decreased. In these plots, N losses were less than half of estimated plant uptake, suggesting that other mechanisms, such as increased microbial immobilization of N, accounted for retention of N in deep soils. In long-term laboratory incubations, soils from plots that had both above- and below-ground litter inputs excluded for 5 years showed a trend towards lower DOC loss rates, but not lower respiration rates. Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.  相似文献   

3.
Given the importance of colored dissolved organic matter (CDOM) for the structure and function of lake ecosystems, a method that could estimate the amount of CDOM in lake waters over large geographic areas would be highly desirable. Satellite remote sensing has the potential to resolve this problem. We carried out model simulations to evaluate the suitability of different satellite sensors (Landsat, IKONOS, and the Advanced land Imager [ALI]) to map the amount of CDOM in concentration ranges that occur in boreal lakes of the Nordic countries. The results showed that the 8-bit radiometric resolution of Landsat 7 is not adequate when absorption by CDOM at 420 nm is higher than 3 m−1. On the other hand, the 16-bit radiometric resolution of ALI, a prototype of the next generation of Landsat, is suitable for mapping CDOM in a wider range of concentrations. An ALI image of southern Finland was acquired on 14, July 2002 and in situ measurements were carried out in 15 lakes (18 stations). The results showed that there is a high correlation (R2 = 0.84) between the 565 nm/660 nm ALI band ratio and the CDOM absorption coefficient in lakes. Analysis of 245 lakes in the acquired satellite image showed a normal distribution of CDOM concentration among the lakes. However, the size distribution of lakes was highly skewed toward small lakes, resulting in the CDOM concentration per unit lake area being skewed toward high values. We showed that remote sensing enables synoptic monitoring of the CDOM concentration in a large number of lakes and thus enables scaling up to the level of large ecosystems and biomes.  相似文献   

4.
This study used high-pressure size exclusion chromatography (HPSEC) to measure the changes in molecular weight distributions of dissolved organic matter (DOM) of two Northern Michigan streams following inoculation with bacterial concentrates from the same locations. During the initial 12 h of the experiment, weight average molecular weight (M w ) of DOM decreased, as high molecular weight components were lost from solution. After 12 h, the M w of DOM increased, primarily because of a loss of intermediate to lower molecular weight components. Leucine incorporation showed little or no bacterial metabolism during the first 12 h, but metabolism increased substantially after 12 h. The initial loss of high molecular weight components during the period of little or no bacterial metabolism suggests preferential adsorption of these components to the bacterial surfaces, perhaps followed by metabolism. This suggested interpretation is consistent with previous observations of preferential adsorption of higher molecular weight components to viable but non-metabolizing Bacillus subtilis and to mineral surfaces. The latter loss of lower molecular weight components was most likely due to bacterial metabolism of the DOM, which is consistent with previous observations that lower molecular weight components are more biodegradable. The HPSEC technique uses 254 nm wavelength for detection and focuses primarily on humic- and fulvic-type components rather than low molecular weight organic molecules, such as carbohydrates. Thus, results confirmed that humic/fulvic components are biodegradable, but did not address other DOM components.  相似文献   

5.
Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter   总被引:1,自引:0,他引:1  
The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and redox state of important trace metals e.g., iron and copper, and the fate of persistent organic pollutants (POPs). The generation of this species from irradiated DOM may be especially important in Arctic surface waters during the boreal summer, which contains high levels of DOM and experiences continual solar irradiance. Here, we investigate the OH· produced from laser irradiated Arctic DOM isolated from Toolik Lake, AK (68°38′ N, 149°43′ W). We measured the wavelength dependence of OH· production for aqueous solutions of DOM and report that the greatest OH· production occurs at wavelengths less than 360 nm. OH· production rates ranged from 1.7 (±0.1)×10−7 M h−1 to 6.4 (±0.2)×10−7 M h−1, with the rate depending on both irradiation wavelength and to a lesser degree the method used to isolate the DOM matrix. These findings lead to a better understanding of the potentially important photo-oxidation processes that may impact DOM cycling in the Arctic.  相似文献   

6.
Mangroves represent a major environment of tropical coasts. They are highly productive, and act both as a source and a sink of organic carbon. Concentrations and characteristics (fluorescence and hydrophobic–hydrophilic fractions) of dissolved organic matter (DOM) were investigated in relation to the organic content of sediments and to the chemistry of pore waters along the coastline of French Guiana. The pore waters studied were extracted (centrifugation, soil moisture sampler) from sediments cored beneath A. germinans mangrove stands representative of development stages: pioneer, mature and senescent. In order to asses the effects of seasonal changes, two cores were performed in each location, just after dry and wet seasons, respectively. Dissolved organic carbon (DOC) concentrations in pore waters of the upper sediment were found to increase, from 0.7 mmol l−1 under the pioneers to 9 under senescent mangroves. The evolution of sedimentary organic carbon (SedOC) in the same sediment paralleled that of DOC, increasing from 0.7 to 28%. On the contrary, in the lower parts of sediment cores SedOC and DOC displayed contrasting vertical trends: SedOC decreased sharply with depth while DOC increased, reaching concentrations up to 30 mmol l−1 at 50 cm in the older, senescent mangroves. In addition, the Fluorescence/DOC ratios and the hydrophobic contents of DOC were higher at greater depths in most cores, expressing changes in the DOC composition. These results suggest that the DOC of the upper layers originated directly from the SedOC of the enclosing sediment, while the hydrophobic and fluorescent DOC accumulated in the anoxic bottom layer. The mechanisms responsible for this accumulation at depth requires additional research to be fully understood. However, the anoxic conditions and high pH values prevailing in the lower sediment, by lessening DOM sorption and enhancing SedOC dissolution, may be partly responsible for the high DOC concentrations and fluorescences at depth. In addition, seasonal variation may be involved. During the rainy season, water sources were mixed resulting in lower DOC concentrations in the upper sediment, whereas during the dry season, increased evapotranspiration concentrate salts and DOC, which are transported vertically with percolating water.  相似文献   

7.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

8.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) character were investigated in soil water (15 and 40 cm) and streams at eleven sites in Olympic National Park. In addition, the effect of added nitrogen on soil water DOM concentration and composition was tested. Forested plots covering a gradient of precipitation, climate, slope, and aspect in Olympic National Park were fertilized with the addition of 20, 10 and zero (control) kg urea-N ha–1 y–1. Seven sites had the two different fertilizer treatments and control plots, while the additional four sites had no fertilizer treatments. Soil water DOC concentrations ranged from 0.5 mg C/L to 54.1 mg C/L, with an average value of 14.1 mg C/L. Streams had low DOC concentrations ranging from 0.2 mg C/L to 4.4 mg C/L, with an average value of 1.2 mg C/L. DOM composition was examined with regard to molar ratios, H:C, O:C and N:C, index of unsaturation, average carbon oxidation state, and specific absorbance. Fertilizer had no consistent effect on either DOM concentration or composition across the study sites. Soil depth influenced both DOM concentration and composition. Shallow soil water DOM had greater concentrations, higher specific absorbance, a higher degree of unsaturation, and had lower molar ratios compared to deep soil water samples. Overall, changes in DOM stoichiometry and specific absorbance as a function of soil depth were consistent despite the diversity of the forested study sites sampled.  相似文献   

9.
Leaching of dissolved organic carbon (DOC) from the O layer is important for the carbon cycling of forest soils. Here we study the role of the Oi, Oe and Oa horizons in DOC leaching from the forest floor in field manipulations carried out in a Norway spruce forest stand in southern Sweden. The manipulations involved the addition and removal of litter and the removal of Oi, Oe and Oa horizons. Our data suggest that both recent litter and humified organic matter contribute significantly to the leaching of dissolved organic matter from the O layer. An addition of litter corresponding to four times annual litterfall resulted in a 35% increase in DOC concentrations and fluxes although the specific UV absorbance remained unchanged. The removal of litterfall and the Oi horizon resulted in a decreased DOC concentration and in a significant increase in the molar UV absorptivity. The DOC concentration under the Oa horizon was not significantly different from that under the Oe horizon and there were no increase in DOC flux, but rather a decrease, from the bottom of the Oe horizon to the bottom of the Oa horizon, suggesting that there is no net release of DOC in the Oa horizon. However, significant leaching of DOC occurred from the Oa horizon when litterfall and the Oi and Oe horizons were removed. This indicates that there is both a removal of DOC from the Oi and Oe horizons and a substantial production of DOC in the Oa horizon. Quantitatively, we suggest that the Oi, Oe and Oa horizons contributed approximately 20, 30 and 50%, respectively, to the overall leaching of DOC from the O layer.  相似文献   

10.
Batch equilibration experiments were conducted to evaluate the effects of dissolved organic matter (DOM) from wheat straw (DOMw) and swine manure (DOMs) on copper (Cu) adsorption and behavior in Haplic Phaeozems, Haplic Acrisol, and Eutric Fluvisol in China. Results showed that the Cu adsorption isotherms were well fitted with both Langmuir and Freundlich equations. The Cu maximum potential adsorption capacity of the three soils followed the order of Eutric Fluvisol > Haplic Phaeozems > Haplic Acrisol. DOMw and DOMs increased the Cu adsorption capacity in Haplic Phaeozems and Haplic Acrisol, and the promoting role of DOMs on Cu adsorption was obviously higher than that of DOMw. Increasing DOM concentration of DOMw and DOMs promoted the Cu adsorption in Haplic Phaeozems and Haplic Acrisol. However, this promoting effect weakened with increasing DOM concentration. Moreover, DOMw and DOMs inhibited the Cu adsorption in Eutric Fluvisol, and this inhibitory effect significantly increased with increasing DOM concentration. The results may be used to assess the potential environmental contamination of the studied soils and to control the application of organic fertilizers.  相似文献   

11.
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the 13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the 13C enrichment of soil organic matter commonly observed with depth in soil profiles. published online 2004  相似文献   

12.
To explore the effect of exogenic dissolved organic matter (DOM) on Cu(II) sorption in agricultural soils, 26 agricultural soils were collected across China. Exogenic dissolved organic matter, extracting from wheat straw (DOMW) and swine manure (DOMS), respectively, were added to the soils to conduct a series of batch sorption and characterization experiments. The solid-liquid partition coefficient (Kd) ranged from 0.02 to 76.46 L g?1, suggesting different Cu(II) sorption on various soils. PCA analysis indicated that pH, free Fe/Al oxides, carbon, and total Cu content had a significant positive relationship with the Cu(II) sorption, respectively. And the contribution rate of pH was the highest (38.15%). Moreover, DOM markedly inhibited the Cu(II) sorption in alkaline soils while promoted the Cu(II) sorption in acidic soils, which were interacted by the soil properties and DOM characteristics. The effect of DOMS on Cu(II) sorption were more obvious than DOMW, which were further confirmed by Fourier transform infrared (FTIR) spectroscopy. FTIR also showed Cu(II) was primarily adsorbed on the specific functional groups, such as CO, OH, and CO, providing direct evidences for the binding of Cu(II) with DOM. This study can guide the rational use of organic fertilizers, and also provide baseline knowledge for the prevention and control of soil pollution.  相似文献   

13.
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV–Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13–15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates.  相似文献   

14.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

15.
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation–emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic carbon (BDOC) incubations to investigate the chemical quality of DOM in soil water collected from 25 cm piezometers in four different wetland and forest soils: bog, forested wetland, fen and upland forest. There were significant differences in soil solution concentrations of dissolved organic C, N, and P, DOC:DON ratios, SUVA254 and BDOC among the four soil types. Throughout the sampling period, average DOC concentrations in the four soil types ranged from 9–32 mg C l−1 and between 23–42% of the DOC was biodegradable. Seasonal patterns in dissolved nutrient concentrations and BDOC were observed in the three wetland types suggesting strong biotic controls over DOM concentrations in wetland soils. PARAFAC modeling of excitation–emission fluorescence spectroscopy showed that protein-like fluorescence was positively correlated (r 2 = 0.82; P < 0.001) with BDOC for all soil types taken together. This finding indicates that PARAFAC modeling may substantially improve the ability to predict BDOC in natural environments. Coincident measurements of DOM concentrations, BDOC and PARAFAC modeling confirmed that the four soil types contain DOM with distinct chemical properties and have unique fluorescent fingerprints. DOM inputs to streams from the four soil types therefore have the potential to alter stream biogeochemical processes differently by influencing temporal patterns in stream heterotrophic productivity.  相似文献   

16.
Francis  Cathy  Sheldon  Fran 《Hydrobiologia》2002,481(1-3):113-124
The Darling River, in New South Wales, Australia, is a large semi-arid system with a highly variable flow regime, characterised by unpredictable events of flooding and drought. In large lowland rivers like the Darling, lateral (river-floodplain) interactions can greatly influence both physical and biological components of the system. The floodplain and riparian zone of the Darling River is dominated by River Red Gum (RRG), Eucalyptus camaldulensis. The large amount of organic matter they produce accumulates on the floodplain and on benches within the channel, and is subject to alternate periods of flooding and drying as a result of highly variable flows. This paper examines the effect of alternate periods of flooding and drying on the processing of E. camaldulensis organic matter. Results of the 6-month in situ field study, together with results from laboratory experiments comparing dissolved organic carbon (DOC) release from various RRG litter types, suggest that RRG leaves provide the most bio-available source of carbon to the system, while bark may be more important as a habitat for invertebrates and other fauna. Laboratory experiments exploring the effect of drying and re-flooding on litter breakdown and release of DOC suggested that the majority of DOC was released from RRG leaves in the first 24 h of inundation. Also, upon drying and re-flooding of the leaves, a smaller but significant release of DOC occurred. However, an alternative wet/dry cycle did not affect weight loss of the leaf litter. Results of the field and lab experiments suggest that RRG leaves represent an important source of carbon to the Darling River, with inputs being influenced by the highly variable flow regime.  相似文献   

17.
以甘油磷酸钠(Sodium Glycerophosphate,以下简称NaGly)作为外源可溶性有机磷,从富营养化的养殖池污泥中分离到5株可溶性有机磷去除菌株,通过除磷率比较,筛选出一株最为高效的菌株D2,其对初始浓度为5mg/L甘油磷酸盐磷(Phosphorus Glycerophosphate,以下简称GP-P)的去除率可达99.0%。此外,对其进行了16SrRNA基因序列测定,并进一步研究了其生长特性与除磷特性。试验结果表明,菌株D2为肠球菌(Enterococcus sp.),与屎肠球菌(Enterococcus faecium)菌株KT4S13(登录号:AB481104)和CICC6078(登录号:DQ672262)的16SrRNA基因序列相似性近100%;其生长周期为:0-4h为生长迟缓期,4-8h为对数生长期,8-28h为稳定期,28h以后为衰亡期;且在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均能够生长,其中菌株D2最适生长的温度范围和pH范围分别为30°C-35°C、6.0-7.0,而且20-30mg/LGP-P能显著促进菌株D2生长。此外,菌株D2在进入衰亡期之前随着作用时间的延长,对20mg/LGP-P的除磷率逐渐升高,在进入衰亡期后的28-32h内对20mg/LGP-P的除磷效果趋于稳定,其在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均具有除磷作用,其最适除磷温度范围、pH范围和GP-P浓度范围分别为25°C-35°C、6.0-7.0和5-10mg/L。  相似文献   

18.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

19.
Sorption and desorption of 1, 2, 3-trichlorobenzene (TCB) and 1,2,4,5-tetrachlorobenzene (TeCB) onto wood char prepared from maple wood shavings heated at 500°C were studied in the presence of dissolved organic matter (DOM), including humic acid (HA), L-malic acid (L-MA), and peptone. Compared to TCB, TeCB exhibited more nonlinear and stronger sorption onto wood char. Nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of HA enhanced the sorption capacity and desorption hysteresis of TCB and TeCB on wood char mainly due to the strong sorption of HA on wood char surface. Moreover, there were positive relations between Kd values of TCB and TeCB and the HA concentration (p < 0.01). In contrast, peptone reduced the sorption capacity and increased the sorption reversibility because of the partition of TCB and TeCB in peptone solution. L-MA at 50-200 mg·L?1 also leads to a decrease in sorption capacity and irreversibility attributed to solubilization, although the sorbed L-MA on the wood char surface can slightly increase TCB and TeCB sorption. At the same concentration, peptone leads to a higher decrease in TCB sorption than L-MA. Also, negative correlations were found between Kd values of TCB and TeCB and the L-MA and peptone concentration (p < 0.01). Our results may help to understand the different impacts of DOM on the transport and fate of halogenated aromatic hydrocarbons in aquatic environments polluted with chars.  相似文献   

20.
To investigate the relevance of biochemical parameters in biogeochemical mechanisms of the soil, it is important to gather data related to different soil types under different pedogeoclimatic conditions. In this study, we investigated on the calcareous agricultural soils in the Saiss plain (North Morocco). Four agricultural soils exposed to multi-metal (Cr, Cu, Zn, and Ni) and organic matter (OM) contamination as a result of irrigation with Oued Fez and Oued Sebou waters that are affected by urban and industrial activities around the city of Fez were studied and compared to a reference site irrigated with uncontaminated water. The study concerned soil physicochemical properties and the activity of a range of enzymes [phosphatase (PHOS), arylsulfatase (SULF), urease (UREA), arylamidase (AMID), β-galactosidase (GALA), glucosidase (GLUC), and laccase (LACA)] related to nutrients cycles. Pearson's correlations between these parameters showed that soil enzymatic activities (PHOS, SULF, UREA, GALA, GLUC, and LACA) were correlated positively with heavy metals (Cu, Zn, and Cr) concentrations in the soil and also with dissolved organic carbon (DOC), and negatively with the aromaticity (AROM) of these compounds. Interestingly, analysis of intra-site correlations showed strong relationships among enzyme activities in the reference soil, while in contaminated soils, these activities were largely unrelated to each other. It was concluded that soil irrigation with heavy-metal- and OM-contaminated watercourses over decades has resulted in soils with high enzymatic activities function and nutrient turnover but altered relationships among geochemical cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号