首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate dehydrogenase (L-glutamate:NAD+ oxidoreductase (deaminating); EC 1.4.1.2) has been purified from Peptostreptococcus asaccharolyticus in a single step using dye-ligand chromatography. The enzyme (GDH) was present in high yields and was stabilized in crude extracts. A subunit molecular weight of 49000 +/- 500 was determined by SDS polyacrylamide gel electrophoresis and six bands were obtained after cross-linking the subunits with dimethyl suberimidate. This bacterial GDH was predominantly NAD+-linked, but was able to utilize both NADP+ and NADPH at 4% of the rates with NAD+ and NADH, respectively. An investigation of the amino acid specificity revealed some similarities with GDH from mammalian sources and some clear differences. The values of apparent Km for the substrates ammonia, 2-oxoglutarate, NADH, NAD+ and glutamate were 18.4, 0.82, 0.066, 0.031 and 6 mM, respectively. The P. asaccharolyticus GDH was not regulated by purine nucleotides, but was subject to strong inhibition with increasing ionic strength.  相似文献   

2.
Tryptic digestion of a multifunctional enzyme from porcine liver containing methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), methenyltetrahydrofolate cyclohydrolase (5,10-methenyltetrahydrofolate 5-hydrolase, EC 3.5.4.9) and formyltetrahydrofolate synthetase (formate:tetrahydrofolate ligase, EC 6.3.4.3) activities destroys the synthetase. A fragment containing both dehydrogenase and cyclohydrolase activities has been isolated by affinity chromatography on an NADP+-Sepharose affinity column. The purified fragment is homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis where its molecular weight was determined as 33 000 +/- 1200 compared with 100 000 for the undigested protein. The cyclohydrolase activity retains sensitivity to inhibition by NADP+, MgATP and ATP.  相似文献   

3.
Summary P-Chloromercuribenzoate alters various reactions of rat liver glucose (hexose phosphate) dehydrogenase differently. The reagent has little effect on the glucose: NAD or the glucose: NADP oxidoreductases, doubles the rates of oxidations of galactose-6-phosphate and glucose-6-phosphate by NADP and greatly stimulates the oxidations of glucose-6-phosphate and galactose-6-phosphate by NAD. The reagent appears to react with a sulfhydryl group of the enzyme since activation is reversed and prevented by mercaptoethanol. The direct reaction of the reagent with the enzyme is indicated by its lower thermal stability in the presence of the p-chloromercuribenzoate. The size of the enzyme appears to be the same when determined by sucrose gradient centrifugation in the presence or absence of p-chloromercuribenzoate. In microsomes, the oxidation of NADH or NADPH hampers measurements of glucose dehydrogenase. Since p-chloromercuribenzoate inhibits microsomal oxidation of reduced nicontinamide nucleotides, it is possible to assay for glucose dehydrogenase accurately in the presence of the mercurial in microsomes and microsomal extracts and thus measure the effectiveness of a detergent in extracting the enzyme from microsomes.Abbreviation pcMB p-chloromercuribenzoic acid  相似文献   

4.
Glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate : NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) from spinach chloroplasts is a polymeric protein of approx. 600,000 daltons and sodium dodecyl sulphate gel electrophoresis shows that it consists of two subunits of molecular weight 43,000 and 37,000. Comparison of amino acid analyses and tryptic peptide maps indicates that the two subunits have a different primary structure. The native enzyme contains 0.5 mol of NADP+ and 0.5 mol of NAD+ per protomer of 80,000 daltons, no reduced pyridine nucleotides have been detected. Almost complete inactivation is obtained by reaction of two cysteinyl residues per 80,000 daltons with tetrathionate or iodo[14C2]acetic acid; since the same amount of radioactivity is incorporated in the two subunits it is likely that they are both essential for the catalytic activity. Charcoal stripping of native glyceraldehyde-phosphate dehydrogenase produces an apoprotein which still retains most of the enzymatic activity but, unlike the holoenzyme, is gradually inactivated by storage at 4 degrees C and does not react with iodoacetate under the same conditions in which the holoenzyme is completely inactivated.  相似文献   

5.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

6.
Purification and properties of sorbitol dehydrogenase from mouse liver   总被引:1,自引:0,他引:1  
1. The sorbitol dehydrogenase (L-iditol: NAD oxidoreductase, EC 1.1.1.14) from mouse liver has been purified to homogeneity. 2. The enzyme has a mol. wt of 140,000 and is composed of four identical subunits of mol. wt 35,000. 3. the purified enzyme catalyses both sorbitol oxidation and fructose reduction. 4. It is specific for NAD+ (NADH) and does not function with NADP+ (NADPH). 5. The Michaelis constants for sorbitol, fructose, NAD+ and NADPH are 1.54 and 154 mM, 58.8 and 15 microM, respectively. 6. The enzyme is SH-group reagent sensitive and is strongly inhibited by 1,10-phenanthroline.  相似文献   

7.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

8.
Administration of niridazole to Saccostomus campestris produced changes in enzyme activity in Schislosoma haematobium females as indicated histochemically by a decrease in the activity of cytochrome oxidase (EC 1.9.3.1), malate (NAD) dehydrogenase (EC 1.1.1.37), malate (NADP) dehydrogenase (EC 1.1.1.40), succinate dehydrogenase (EC 1.3.99.11), isocitrate (NAD) dehydrogenase (EC 1.1.1.41), isocitrate (NADP) dehydrogenase (EC 1.1.1.42), lactate dehydrogenase (EC 1.1.1.27), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), NADH: tetrazolium oxidoreductase, NADPH: tetrazolium oxidoreductase, and a disappearance of both the activity of phenolase (EC 1.10.3.1) and the reactivity of vitelline phenols. These changes were associated with the following alterations in the ultrastructure of the parasites: a decrease in number of immature vitelline cells of gonial type, a disruption of the tegument surface, a swelling of mitochondria in vitelline cells, a disappearance of the regular structure of the endoplasmic reticulum and a vaeuolization of the cytoplasm in vitelline cells, an appearance of areas of focal cytoplasmic degradation in vitelline cells, and a disruption of shell globules. The degree of changes in enzyme activity and ultrastructure increased both with increase in the dose of niridazole administered to the hosts, and with length of time after treatment.Preincubation of control sectioned material in a buffered niridazole-sucrose solution produced total inhibition of succinate dehydrogenase activity, whereas the activity of other enzymes examined remained unchanged.  相似文献   

9.
The pH dependence of the initial transient velocity of NADPH production during the burst phase of the oxidative deamination of L-glutamate by L-glutamate dehydrogenase (L-glutamate : NAD(P)+ oxidoreductase (deaminating), EC 1.4.1.3) and NADP+ has been measured by stopped-flow spectrophotometry. These studies provide evidence that the entire pH dependence below pH 8.26 arises from reaction steps contributing to V of the burst with an apparent pKa of 8.1 +/- 0.1. The data are consistent with a model in which the formation of the first enzyme-coenzyme-substrate ternary complex on the reaction path equilibrates rapidly and in which the pH-dependent steps are mechanistically close to and may include the catalytic hydrogen transfer itself. At pH 8.87, there is evidence that L-glutamate binds less tightly to the enzyme and to the enzyme-NADP+ complex than at lower pH values.  相似文献   

10.
We have previously reported that cytochrome P-450LTB in the microsomes of human polymorphonuclear leukocytes (PMN) catalyzes three omega-oxidations of leukotriene B4 (LTB4), leading to the sequential formation of 20-OH-LTB4, 20-CHO-LTB4, and 20-COOH-LTB4 (Soberman, R.J., Sutyak, J.P., Okita, R.T., Wendelborn, D.F., Roberts, L.J., II, and Austen, K. F. (1988) J. Biol. Chem. 263, 7996-8002). The identification of the novel final intermediate, 20-CHO-LTB4, allowed direct analysis of its metabolism by PMN microsomes in the presence of adenine nucleotide cofactors. Microsomes in the presence of 100 microM NAD+ or 100 microM NADP+ converted 1.0 microM 20-CHO-LTB4 to 20-COOH-LTB4 with a Km of 2.4 +/- 0.8 microM (mean +/- S.E., n = 4) and a Vmax of 813.9 +/- 136.6 pmol.min-1.mg-1, for NAD+, as compared to 0.12 microM and 5.0 pmol.min-1.mg-1 (n = 2) for NADPH as a cofactor. The conversion of 1.0 microM of 20-CHO-LTB4 to 20-COOH-LTB4 in the presence of saturating concentrations (1.0 mM) of both NAD+ and NADP+ was not greater than the reaction in the presence of 1.0 mM of each cofactor separately, indicating that NAD+ and NADP+ were cofactors for the same enzyme. Antibody to cytochrome P-450 reductase did not inhibit the conversion of 20-CHO-LTB4 to 20-COOH-LTB4. When 1.0 microM 20-OH-LTB4 was added to microsomes in the presence of NADPH, approximately three-fourths of the product formed (63.7 +/- 5.1 pmol; mean +/- S.E., n = 3) was 20-CHO-LTB4 and approximately one-fourth (21.3 +/- 3.9 pmol; mean +/- S.E., n = 3) was 20-COOH-LTB4. In the presence of both NADPH and NAD+, only 20-COOH-LTB4 (85.5 +/- 9.9 pmol; mean +/- S.E., n = 3) was formed. PMN microsomes also contain an NADH-dependent aldehyde reductase which converts 20-CHO-LTB4 to 20-OH-LTB4, a member of the LTB4 family of molecules with biological activity. Based upon kinetic, cofactor and inhibition data, microsomal aldehyde dehydrogenase preferentially regulates the final and irreversible inactivation step in the LTB4 metabolic sequence.  相似文献   

11.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3) from the hyperthermophilic Archeon Pyrococcus furiosus was purified to homogeneity by chromatography on anion-exchange, molecular-exclusion and hydrophobic-interaction media. The purified native enzyme had an M(r) of 270,000 +/- 15,000 and was shown to be a hexamer with identical subunits of M(r) 46,000. The enzyme was exceptionally thermostable, having a half-life of 3.5 to more than 10 h at 100 degrees C, depending on the concentration of enzyme. The Km of the enzyme for ammonia was high (9.5 mM), indicating that the enzyme is probably active in the deaminating, catabolic direction. The coenzyme utilization of the enzyme resembled the equivalent enzymes from eukaryotes rather than eubacteria, since both NADH and NADPH were recognized with high affinity. The enzyme displayed a preference for NADP+ over NAD+ that was more pronounced at low assay temperatures (50-70 degrees C) compared with the optimal temperature for enzyme activity, 95 degrees C.  相似文献   

12.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

13.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

14.
A method for purifying hexose-6-phosphate dehydrogenase (beta-D-glucose: NAD(P) -oxidoreductase, EC 1.1.1.47) from rat liver microsomes is described. The purified enzyme was shown to be homogeneous by sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis. It is shown that the enzyme is bound to the inner surface of microsomal membranes, and that glucose 6-phosphate, but not NADP, penetrates almost freely into the membranes at 37 degrees C.  相似文献   

15.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

16.
The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.  相似文献   

17.
NADP- and NAD-dependent glucose dehydrogenase was partially purified from a dark-grown blue-green alga (endophytic Nostoc strain MAC). Polyacrylamide gel electrophoresis established that a single protein possessed dual activity for either NADP or NAD. No other electron acceptor substituted for pyridine nucleotides and no evidence for a flavin prosthetic group was found. Although the Km for NADP was 8.8 mum and for NAD 328 mum, the enzyme was equally active with NAD or NADP at saturating levels of substrates. The enzyme was similar to previously described glucose dehydrogenase in that it had a high Km for glucose (18-20 mm at 35 C) and an alkaline pH optimum of 7.6 to 9.4.  相似文献   

18.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

19.
The yeast Candida parapsilosis possesses two routes of electron transfer from exogenous NAD(P)H to oxygen. Electrons are transferred either to the classical cytochrome pathway at the level of ubiquinone through an NAD(P)H dehydrogenase, or to an alternative pathway at the level of cytochrome c through another NAD(P)H dehydrogenase which is insensitive to antimycin A. Analyses of mitoplasts obtained by digitonin/osmotic shock treatment of mitochondria purified on a sucrose gradient indicated that the NADH and NADPH dehydrogenases serving the alternative route were located on the mitochondrial inner membrane. The dehydrogenases could be differentiated by their pH optima and their sensitivity to amytal, butanedione and mersalyl. No transhydrogenase activity occurred between the dehydrogenases, although NADH oxidation was inhibited by NADP+ and butanedione. Studies of the effect of NADP+ on NADH oxidation showed that the NADH:ubiquinone oxidoreductase had Michaelis-Menten kinetics and was inhibited by NADP+, whereas the alternative NADH dehydrogenase had allosteric properties (NADH is a negative effector and is displaced from its regulatory site by NAD+ or NADP+).  相似文献   

20.
1. The bacterial distribution of alanine dehydrogenase (L-alanine:NAD+ oxidoreductase, deaminating, EC 1.4.1.1) was investigated, and high activity was found in Bacillus species. The enzyme has been purified to homogeneity and crystallized from B. sphaericus (IFO 3525), in which the highest activity occurs. 2. The enzyme has a molecular weight of about 230 000, and is composed of six identical subunits (Mr 38 000). 3. The enzyme acts almost specifically on L-alanine, but shows low amino-acceptor specificity; pyruvate and 2-oxobutyrate are the most preferable substrates, and 2-oxovalerate is also animated. The enzyme requires NAD+ as a cofactor, which cannot be replaced by NADP+. 4. The enzyme is stable over a wide pH range (pH 6.0--10.0), and shows maximum reactivity at approximately pH 10.5 and 9.0 for the deamination and amination reactions, respectively. 5. Alanine dehydrogenase is inhibited significantly by HgCl2, p-chloromercuribenzoate and other metals, but none of purine and pyrimidine bases, nucleosides, nucleotides, flavine compounds and pyridoxal 5'-phosphate influence the activity. 6. The reductive amination proceeds through a sequential ordered ternary-binary mechanism. NADH binds first to the enzyme followed by ammonia and pyruvate, and the products are released in the order of L-ALANINE AND NAD+. The Michaelis constants are as follows: NADH (10 microM), ammonia (28.2 mM), pyruvate (1.7 mM), L-alanine (18.9 mM) and NAD+ (0.23 mM). 7. The pro-R hydrogen at C-4 of the reduced nicotinamide ring of NADH is exclusively transferred to pyruvate; the enzyme is A-stereospecific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号