首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rau  V. A.  Drachkova  I. A.  Rar  V. A.  Sokolenko  A. A.  Arshinova  T. V.  Kobzev  V. F.  Savinkova  L. K. 《Molecular Biology》2003,37(5):760-766
Interaction with eukaryotic TATA-binding protein (TBP) was analyzed for natural Escherichia coli RNA polymerase or the recombinant holoenzyme, minimal enzyme, or its subunit. Upon preincubation of full-sized RNA polymerase with TBP and further incubation with a constant amount of a 32P-labeled phosph-amide derivative of a TATA-containing oligodeoxyribonucleotide, the yield of the holoenzyme–oligonucleotide covalent complex decreased with increasing TBP concentration. This was considered as indirect evidence for complexing of RNA polymerase with TBP. In gel retardation assays, the holoenzyme, but neither the minimal enzyme nor the subunit, interacted with TPB, since the labeled probe formed complexes with both proteins in the reaction mixture combining TBP with the minimal enzyme or the subunit. It was assumed that E. coli RNA polymerase is functionally similar to eukaryotic RNA polymerase II, and that the complete ensemble of all subunits is essential for the specific function of the holoenzyme.  相似文献   

2.
Summary The affinity of Bacillus subtilis RNA polymerase and subunits to DNA was examined by a non-denaturing polyacrylamide slab gel electrophoresis method which made it possible to resolve DNA-bound and free subunits. The results revealed that subunit, but not subunit had a relatively high affinity for double stranded DNA. The subunit was bound maximally to super-coiled pGR1-3 plasmid DNA at a mass ratio of /DNA of 0.7. With B. subtilis double stranded linear DNA one subunit was bound per approximately 1,000 base pairs. The -DNA complex was sufficiently stable for isolation by a molecular gel filtration column. The subunit had much higher affinity for super-coiled than for linear pGR1-3 DNA or for linear double stranded or denatured DNA from B. subtilis, E. coli, and calf thymus. These results indicate that the free B. subtilis subunit, in contrast to the E. coli subunit, can bind by itself to DNA.  相似文献   

3.
Summary Antibodies were raised against a synthetic tetradecameric peptide with an amino acid sequence, DLIQEGNIGLMKAV, which corresponds to the most highly conserved region of bacterial RNA polymerase factors. In a Western-blot analysis of total Escherichia coli proteins, the antiserum reacted specifically with at least three proteins with apparent molecular weights of 75 kDa, 27 kDa and 23 kDa, in addition to the known factors (70 and 32). The majorities of 70 and 32 were recovered as associated forms with the RNA polymerase on glycerol gradient centrifugation, while the other cross-reacting proteins were not. Unambiguous evidence was obtained which indicated that the intracellular level of 32 increased rapidly upon heatshock, at least in the strain containing high copy numbers of the rpoH gene.  相似文献   

4.
Summary Amber mutants of Escherichia coli K-12 affected in the structural gene (rpoD) for th subunit of RNA polymerase have been obtained from a strain harboring a temperature-sensitive amber suppressor (supF-Ts6) which is active only at low temperatures. These mutants grow normally at low temperature (30°C) but do not grow at high temperature (42°C) due to the inability to synthesize factor. In one mutant studied in detail (rpoD40), the rate of -factor synthesis at 30°C is about half that of the wild type and is decreased to 10%–15% within 1 h of incubation at 42°C. The synthesis of core polymerase subunits or bulk protein is virtually unaffected at least for 2 h. The defect of the mutant in synthesis and growth at high temperature can be suppressed by any of the amber suppressors tested (supD, supE or supF). RNA-polymerase holoenzymes prepared from the mutant cells carrying each of the suppressors (grown at 42°C) exhibit different thermostabilities attributable to alterations in the factor. The reduced synthesis in the mutant is accompanied by the synthesis of polypeptide tentatively identified as amber fragment. These results as well as the genetic mapping data indicate that the amber mutation (rpoD40) resides within the structural gene for the factor and directly affects synthesis upon inactivation of the suppressor at high temperature.  相似文献   

5.
Specificity of sigma-dependent binding of RNA polymerase to DNA   总被引:1,自引:0,他引:1  
Summary Although a large number of E. coli RNA polymerase molecules can bind to phage T3 DNA, not more than three remain bound per DNA template after addition of poly inosinic acid (poly I) which has a high affinity for the enzyme. These stable complexes are able to initiate RNA chains without lag as the enzyme is resistant against rifampicin if substrate is added simultaneously with the drug. Poly I resistant complexes decay very rapidly in the cold (Fig. 2) and are not formed in the absence of the polymerase factor (Table 2). The data provide additional support for the idea that the factor effects the binding of the enzymes to specific sites on the DNA template.  相似文献   

6.
7.
Summary The influence of mutations in structural genes of and subunits of RNA polymerase upon the synthesis of these subunits in E. coli cells have been investigated. An amber-mutation ts22 in the subunit gene decreases the intracellular concentration of this subunit and the rate of its synthesis. At the same time the concentration and the rate of subunit synthesis is increased. These suggest the compensatory activation of the RNA polymerase operon that takes place under the conditions of shortage of one of the subunits. Reversions, as well as more effective supression of ts22 amber mutation, achieved by streptomycin addition, substitution of su2 by su1, or by specific mutations, result in a rise of and drop of subunit concentration and synthesis in ts22 mutant. TsX missense-mutation in the subunit gene alters the properties of the enzyme increasing, at the same time, the concentration and the rate of synthesis of both and subunits, particularly at a nonpermissive temperature. This points to an inversely proportional relationship between the rate of synthesis of RNA polymerase subunits and the total intracellular activity of the enzyme. Extra subunits are rapidly degraded in ts22 and tsX mutants.The whole complex of our data and those of others suggest that the regulation of the synthesis of RNA polymerase subunits is accomplished by interaction of a negative and a positive mechanisms of regulation which include not only activators and repressors but the enzyme itself as well.  相似文献   

8.
The Escherichia coli rpoS gene encodes an RNA polymerase sigma factor (sigma S or S) required for the expression of stationary-phase genes. In the first published rpoS sequence from E. coli K-12 codon 33 is given as CAG. However, several subsequent independent studies found the amber codon TAG at this position ( rpoSAm). Besides this amber codon, other codons such as TAT have also been found at this location in rpoS. Comparative genome analysis now leads us to propose TAG as the parental codon 33 in rpoS in E. coli K-12. Five different stocks of the strain W3110, which differ in the levels of S protein they express, were investigated. We sequenced the rpoS gene from these, and found a T at nucleotide position 97 in four out of the five stocks and a G at position 99 in three out of the five. W1485, a parental strain of W3110, and W3350, a derivative of W3110, are also rpoSAm mutants. Such rpoSAm mutants would be expected to show no RpoS activity. The retention of partial or intermediate S activity by suppressor-free rpoSAm mutants is therefore puzzling. We propose that a functional, N-terminally truncated, S (1–53S) can be translated from a Secondary Translation Initiation Region (STIR) located downstream of the amber codon 33. It has recently been reported that a fragment of RpoS (1–53S) that lacks the first 53 amino acids is functional when synthesized in vivo. Taken together, our results support the hypothesis that the original codon 33 of the rpoS gene in E. coli K-12 strains is the amber codon TAG.Communicated by W. Goebel  相似文献   

9.
Summary We report the nucleotide sequence of a promoter recognized by RNA polymerase from the gram-positive bacterium Bacillus subtilis. This promoter, which was isolated from B. subtilis phage SP01 DNA, is homologous to promoters for Escherichia coli RNA polymerase; the sequences of the -35 region and the Pribnow box were 5TTGACT and 5CATAAT, respectively (T is the thymine analog 5-hydroxymethyluracil in SP01 DNA). These sequences each differed by only a single base pair from the preferred sequences for E. coli promoters. Not surprisingly, the SP01 promoter was actively transcribed in vitro by E. coli RNA polymerase as well as by B. subtilis RNA polymerase.  相似文献   

10.
Summary A method was developed to measure the amounts of RNA polymerase subunits, , , and in crude extracts of Escherichia coli. The proteins were labelled by growing the cells in 35S-sulphate containing media. For measuring and , the cell lysate was electrophoresed on 6% polyacrylamide gels containing SDS and the and bands cut out and counted. For measuring and , the cell lysate was co-electrophoresed with dansylated RNA polymerase on 8% polyacrylamide gels containing SDS. The fluorescent bands were cut out, the proteins eluted, and the and subunits further purified on polyacrylamide gels containing 8 molar urea.The results are: (1) is the subunit of the core RNA polymerase which is present in limiting amount. (2) The core enzyme, as measured by , constitutes a constant fraction of total cellular protein (0.9%), independent of the bacterial growth rate. (3) The subunit is made in excess and is probably regulated independently. (4) The subunit is present in 0.3–0.4 times the amount of the core enzyme. (5) All four subunits are fully conserved after bacteriophage T4 infection.  相似文献   

11.
The essential role of DNA-dependent RNA polymerases in gene expression and the fact that the multimeric species are highly conserved throughout nature makes these enzymes a particular fascinating area of study. Here we shall review the conservation of structures and their relationship to function, especially in the multimeric eubacterial RNA polymerases, paying particular attention to the core subunit and to recent studies of -factors of both the 70 and 54 families. We shall conclude with a brief consideration of phage-encoded RNA polymerases and phage-mediated modification of the host enzyme, and of the evolution of RNA-synthesising enzymes.  相似文献   

12.
Summary An E. coli mutant rpoA109 unable to support the growth of phage P2 produces DNA-dependent RNA polymerase with an altered subunit. Histidine is substituted for leucine in one tryptic peptide from the mutant subunit. The existence of only one rpoA gene within the E. coli chromosome is indicated.  相似文献   

13.
Summary The relative rates of RNA polymerase biosynthesis in Bacillus subtilis has been examined under steady-state growth conditions. The synthesis of RNA polymerase subunits (, , , ) has been followed by subunit fractionation of immunoprecipitated [3H]-labelled samples on SDS-polyacrylamide gels. The stoichiometries of ::: subunits have been determined from cultures pulse-labelled during steady-state growth. The results suggest that an unassembled pool of the -subunit exists from which the holoenzyme is formed.Upon shift-up from acetate to glycerol containing medium, a rapid rise in the differential rate of core enzyme synthesis was observed, while the rate of synthesis of the -subunit was not stimulated. During shift-down, a concomitant reduction in the rate of synthesis of all subunits occurred for the first 20 min after the shift; thereafter, a rate of synthesis characteristic of the new growth rate was established.As cultures enter sporulation, an immediate reduction in the rate of -subunit synthesis was demonstrated.  相似文献   

14.
For the development of Bacillus subtilis as a host for foreign protein synthesis, three types of sigma factor deleted mutants (spoIIAC, spoIIIG and spoIIIC) were constructed by antibiotic marker insertion using plasmid vector-mediated method or LFH (Long Flanking Homology)-PCR. Mother cell specific sigma factor mutants of B. subtilis (K), B. subtilis DB104 spoIIIC (km r)::pMK101, had two to three times higher subtilisin activity than the wild type DB104::pMK101. Subtilisin expression by the other two mutants, B. subtilis DB104 spoIIAC (km r)::pMK101 and DB104 spoIIIG (km r)::pMK101, which are pre-spore specific sigma factor (F and G) deleted strains, was similar to, or less than that of the wild type.  相似文献   

15.
Summary The -glutamyltranspeptidase (-GTP) gene of Bacillus subtilis (natto) plasmid designated pUH1, which is responsible for polyglutamate production, has been cloned and the nucleotide sequence determined. The sequence contains a single open-reading frame stretching for 1260 bp with a relative molecular mass of 49356. Putative -35 and -10 sequences, TTCAAA and TATTAT, were observed as the consensus sequence for the promoter recognized by the 43 RNA polymerase of B. subtilis, and the ribosome binding site, the sequence of which was AACGAG, was complementary to the binding sequence of B. subtilis 16S rRNA except for one base. The amino acid sequence of the gene with the segment of putative protein C403 of staphylococcal plasmid pE194 indicates homology, whereas that with Escherichia coli and mammalian -GTPs does not show any similarity at all.  相似文献   

16.
    
Summary As has been shown previously, RNA polymerase subunit ts-mutation rpoC1 results in an overproduction of RNA polymerase subunits at nonpermissive temperature. The mutant enzyme shows low activity in vitro and a sedimentation coefficient 9S which is characteristic of immature core polymerase. In this paper we describe a mutation designated opr1 which suppresses RNA polymerase subunit overproduction. The mutation was found among Ts+ revertants of the Ts double mutant carrying a rpoC1 mutation and a rif-r rpo B251 mutation. Opr1 is closely linked to the original rpo mutations and shows complete trans-dominance. Although opr1 seems to affect RNA polymerase, it does not suppress the accumulation of immature 9S RNA polymerase and does not restore the activity of the RpoC1 mutant enzyme. This and other results of a comparison of strains carrying different combinations of rpoC1, rpoB251 and opr1 mutations suggest that neither inhibition of total RNA and protein synthesis, nor the low RNA polymerase activity in vitro, nor the apparent defects in enzyme maturation, nor the enzyme degradation observed at 42°C are responsible for the overproduction in RpoC1 strains.  相似文献   

17.
18.
    
Summary The analysis of tryptic peptides was performed on the unassembled as well as assembled form f subunit of the DNA-dependent RNA polymerase from Escherichia coli. The peptide profiles obtained by Dowex 50 column chromatography of the unassembled subunit prepared from cells, either pulse-labeled or continuously labeled with radioactive lysine or arginine, were essentially identical with those of the subunit from intact RNA polymerase. The results suggest that newly synthesized free subunit is assembled into the polymerase structure without any remarkable modifications.The number of lysine- and arginine-containing peaks were close to the values expected from the amino acid composition of subunit assuming that the two subunits in RNA polymerase core enzyme have identical primary structure.  相似文献   

19.
Summary In spite of the generally well-coordinated synthesis of RNA polymerase core enzyme subunits (, and ) in Escherichia coli, a situation was found during the growth transition from exponential to stationary phase in which this coordination was broken (the order of differential repression being ; Kawakami et al. (1979)). The present study indicates that, during a certain period of the growth transition, twice as much subunit is synthesized as subunit and the overproduced subunit accumulates as the assembly intermediate 2 complex, which is rapidly and preferentially degraded.Two independent factors, i.e., carbon source down-shift and oxygen depletion, were examined separately for their influence on the coordinated regulation of the synthesis of RNA polymerase subunits. The depletion of glucose added as a sole carbon source was accompanied by repression of the synthesis of all core enzyme subunits, while under the same conditions the differential rate of subunit synthesis increased. In contrast, the sudden ending of the oxygen supply resulted in specific repression of the synthesis of only and subunits but not of and subunits. The latter result may be explained by the autogenous repression of the rpoBC genes by a temporal increase in the amount of unused cytoplasmic RNA polymerase.Paper XI in this series is Kawakami and Ishihama (1980)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号