首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Striking trait polymorphisms are worthy of study in natural populations because they can often shed light on processes of phenotypic divergence and specialization, adaptive evolution, and (in some cases) the early stages of speciation. We examined patterns of genetic variation within and between populations of mormyrid fishes that are morphologically cryptic in sympatry but produce alternate types of electric organ discharge (EOD). Other species in a large group containing a clade of these morphologically cryptic EOD types produce stereotyped, species-typical EOD waveforms thought to function in mate recognition. First, for six populations from Gabon's Brienomyrus species flock, we confirm that forms of electric fish that exhibit distinctive morphologies and unique EOD waveforms (i.e., good reference species) are reproductively isolated from coexisting congeners. These sympatric species deviate from genetic panmixia across five microsatellite loci. Given this result, we examined three focal pairs of syntopic and morphologically cryptic EOD waveform types that are notable exceptions to the pattern of robust genetic partitioning among unique waveform classes within assemblages. These exceptional pairs constitute a monophyletic group within the Brienomyrus flock known as the magnostipes complex. One member of each pair (type I) produces a head-negative EOD, while the other member (either type II or type III, depending on location) produces a longer duration EOD differing in waveform from type I. We show that signal development in these pairs begins with juveniles of all magnostipes-complex morphs emitting head-positive EODs resembling those of type II adults. Divergence of EOD waveforms occurs with growth such that there are two discrete and fixed signal types in morphologically indistinguishable adults at each of several localities. Strong microsatellite partitioning between allopatric samples of any of these morphologically cryptic signal types suggests that geographically isolated populations are genetically decoupled from one another. By contrast, sympatric morphs appear genetically identical across microsatellite loci in Mouvanga Creek and the Okano River and only very weakly diverged, if at all, in the Ivindo River. Our results for the magnostipes complex fail to detect species boundaries between the focal morphs and are, instead, fully consistent with the existence of relatively stable signal dimorphisms at each of several different localities. No mechanism for the maintenance of this electrical polymorphism is suggested by the known natural history of the magnostipes complex. Despite a lack of evidence for genetic differentiation, the possibility of incipient sympatric speciation between morphs (especially type I and type II within the Ivindo River) merits further testing due to behavioral and neurobiological lines of evidence implying a general role for stereotyped EOD waveforms in species recognition. We discuss alternative hypotheses concerning the origins, stability, and evolutionary significance of these intriguing electrical morphs in light of geographical patterns of population structure and signal variation.  相似文献   

2.
We combined multiple molecular markers and geometric morphometrics to revise the current taxonomy and to build a phylogenetic hypothesis for the African weakly electric fish genus Campylomormyrus. Genetic data (2039 bp DNA sequence of mitochondrial cytochrome b and nuclear S7 genes) on 106 specimens support the existence of at least six species occurring in sympatry. We were able to further confirm these species by microsatellite analysis at 16 unlinked nuclear loci and landmark-based morphometrics. We assigned them to nominal taxa by comparisons to type specimens of all Campylomormyrus species recognized so far. Additionally, we showed that the shape of the elongated trunk-like snout is the major source of morphological differentiation among them. This finding suggests that the radiation of this speciose genus might have been driven by adaptation to different food sources.  相似文献   

3.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes.  相似文献   

4.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
6.
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.  相似文献   

7.
8.
Weakly electric fish from the family Mormyridae produce pulsatile electric organ discharges (EODs) for use in communication. For many species, male EODs are seasonally longer in duration than those of females, and among males, there are also individual differences in EOD duration. While EOD elongation can be induced by the administration of exogenous androgens, androgen levels have never before been assessed under natural or seminatural conditions. By simulating the conditions occurring during the breeding season in the laboratory, we provide evidence of a sex difference in EOD duration as well as document levels of circulating androgens in males. In this study, we analyzed the nature of social influences on male EOD duration and plasma androgen levels in Brienomyrus brachyistius. Individual males, first housed with a single female and then placed into social groups consisting of three males and three females, showed status-dependent changes in EOD duration. Top-ranking males experienced a relatively large increase in EOD duration. Second-ranking males experienced a more modest increase, and low-ranking males experienced a decrease in EOD duration. These changes were paralleled by differences in circulating levels of plasma 11-ketotestosterone (11-KT), but not testosterone, suggesting that the changes in EOD duration may have been mediated by changes in plasma 11-KT levels. Thus, it appears that EOD duration is an accurate indicator of male status, which is under social and hormonal control.  相似文献   

9.
Weakly electric "wave" fish make highly regular electric organ discharges (EODs) for precise electrolocation. Yet, they modulate the ongoing rhythmicity of their EOD during social interactions. These modulations may last from a few milliseconds to tens of minutes. In this paper we describe the different types of EOD modulations, what they may signal to recipient fish, and how they are generated on a neural level. Our main conclusions, based on a species called the brown ghost (Apteronotus leptorhynchus) are that fish: (1) show sexual dimorphism in the signals that they generate; (2) make different signals depending on Whether they are interacting with a fish of the opposite sex or, within their own sex, to a fish of that which is dominant or subordinate to it; (3) are able to assess relative dominance from electrical cues; (4) have a type of plasticity in the pacemaker nucleus, the control center for the EOD, that occurs after stimulation of NMDA receptors that causes a long-lasting (tens of minutes to hours) change in EOD frequency; (5) that this NMDA receptor-dependent change may occur in reflexive responses, like the jamming avoidance response (JAR), as well as after certain long-lasting social signals. We propose that NMDA-receptor dependent increases in EOD frequency during the JAR adaptively shift the EOD frequency to a new value to avoid jamming by another fish and that such increases in EOD frequency during social encounters may be advantageous since social dominance seems to be positively correlated with EOD frequency in both sexes.  相似文献   

10.
We describe isolation and characterization of the first microsatellite loci specifically developed for African weakly electric fish (Mormyridae), for the genus Campylomormyrus. Seventeen of our 18 loci are polymorphic within the Campylomormyrus numenius species complex. The polymorphic loci showed four to 15 alleles per locus, an expected heterozygosity between 0.46 and 0.94, and an observed heterozygosity between 0.31 and 1.00. Most primers also yield reproducible results in several other mormyrid species. These loci comprise a set of molecular markers for various applications, from moderately polymorphic loci suitable for population studies to highly polymorphic loci for pedigree analysis in mormyrids.  相似文献   

11.
Adult males of African weakly discharging electric fish (family: Mormyridae) are distinguished from juveniles and adult females by a dorsally directed indentation of the posterior ventral body wall and by massive bone expansion of the bases of a select number of anal-fin rays. These sexually dimorphic structures seem to facilitate the anal-fin reflex that is displayed during courtship when the male envelopes its anal fin around the female's to form a common spawning pouch. Expanded bone could provide additional surface for muscle attachment and thus assist in part with the courtship sequence. Based on the fact that the expression of the male sexually dimorphic electric organ discharge (EOD) is under androgen control, and that the female EOD can be masculinized through testosterone administration, we hypothesized that androgens should also drive anal-fin ray bone expansion in male mormyrids and equally effect male-like changes in treated juveniles and adult females. Exogenous androgen treatment (17α-methyltestosterone) of adult femaleBrienomyrus nigerresulted in a male-like EOD, and male-typical structural transformations (body wall indentation and anal-fin ray bone expansion). Some of these changes were immediate and receded following hormone withdrawal (EOD), while others developed more slowly and were apparently permanent (indentation and bone formation). 17α-Methyltestosterone administration affected only those targets in females that are normally involved in the male's reproductive behavior, i.e., its courtship signal (EOD) and two morphological features (body-wall indentation and bone expansion). Rays of the dorsal or caudal fins were never affected.  相似文献   

12.
The ultimate aim of this study is to better understand the diversification of African weakly electric fish in the Congo River. Based on a robust phylogenetic hypothesis we examined the radiation within the mormyrid genus Campylomormyrus. Morphological traits relevant for the divergence between the identified species were detected. Among them, the variation in the shape of the trunk-like elongated snout suggested the presence of different trophic specializations. Furthermore, the chosen model taxon, the genus Campylomormyrus, exhibits a wide diversity of electric organ discharge (EOD) waveforms. A comparison of EOD waveform types and phylogenetic relationships showed major differences in EOD between closely related species. This indicates that the EOD might function as a reproductive isolation mechanism. In conclusion, we provide a plausible scenario of an adaptive radiation triggered by sexual selection and assortative mating based on EOD characteristics, but caused by a divergent selection on the feeding apparatus. These findings point towards an adaptive radiation of at least some Campylomormyrus species occurring in the Lower Congo River.  相似文献   

13.
The electric organ discharges (EODs) of five mormyrid species ( Marcusenius senegalensis , Brevimyrus niger , Petrocephalus bovei , Pollimyrus isidori , Hippopotamyrus pictus ) from different sampling sites from the Upper Volta system in West Africa were investigated. EOD waveforms were recorded at high sampling rates in order to compare signal waveform parameters of the different species from different locations. Except for H. pictus , EODs within a species differed significantly from one another in some parameters and waveform variability at least between some sampling sites. In addition, each species showed a continuous spectrum of waveform variations, all or only parts of which were found at certain localities. Although there was variability and sometimes similarities between species, the EOD waveforms were species specific. Knowing their variation spectrum, they can be used for species determination and are probably used for species recognition by the mormyrids. Similarities or differences in EOD waveform expression within a species were not related to geographical distance. By contrast, we suggest that biotic environmental factors at a given location influence the expression of EOD waveforms. These factors affect absolute measurements such as EOD duration and fast Fourier transformation peak frequency as well as the amount of variation for certain waveform parameters across species in a similar manner for a given site. Although EOD waveform might be important for the establishment of reproductive barriers between species, our results suggest that differences in waveforms may not necessarily reflect different species or speciation processes in progress.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 61–80.  相似文献   

14.
Behavior in electric fish includes modulations of a stereotyped electric organ discharge (EOD) in addition to locomotor displays. Gymnotiformes can modulate the EOD rate to produce signals that participate in different behaviors. We studied the reproductive behavior of Brachyhypopomus pinnicaudatus both in the wild and laboratory settings. During the breeding season, fish produce sexually dimorphic social electric signals (SES): males emit three types of chirps (distinguished by their duration and internal structure), and accelerations, whereas females interrupt their EOD. Since these SES imply EOD frequency modulations, the pacemaker nucleus (PN) is involved in their generation and constitutes the main target organ to explore seasonal and sexual plasticity of the CNS. The PN has two types of neurons, pacemakers and relays, which receive modulatory inputs from pre-pacemaker structures. These neurons show an anisotropic rostro-caudal and dorso-ventral distribution that is paralleled by different field potential waveforms in distinct portions of the PN. In vivo glutamate injections in different areas of the PN provoke different kinds of EOD rate modulations. Ventral injections produce chirp-like responses in breeding males and EOD interruptions in breeding females, whereas dorsal injections provoke EOD frequency rises in both sexes. In the non-breeding season, males and females respond with interruptions when stimulated ventrally and frequency rises when injected dorsally. Our results show that changes of glutamate effects in the PN could explain the seasonal and sexual differences in the generation of SES. By means of behavioral recordings both in the wild and in laboratory settings, and by electrophysiological and pharmacological experiments, we have identified sexual and seasonal plasticity of the CNS and explored its underlying mechanisms.  相似文献   

15.
16.
This study explores the evolutionary origins of waveform complexity in electric organ discharges (EODs) of weakly electric fish. I attempt to answer the basic question of what selective forces led to the transition from the simplest signal to the second simplest signal in the gymnotiform electric fishes. The simplest electric signal is a monophasic pulse and the second simplest is a biphasic pulse. I consider five adaptive hypotheses for the evolutionary transition from a monophasic to a biphasic EOD: (i) electrolocation, (ii) sexual selection, (iii) species isolation, (iv) territory defense, (v) crypsis from electroreceptive predators. Evaluating these hypotheses with data drawn largely from the literature, I find best support for predation. Predation is typically viewed as a restraining force on evolution of communication signals, but among the electric fishes, predation appears to have served as a creative catalyst. In suppressing spectral energy in the sensitivity range of predators (a spectral simplification), the EOD waveforms have become more complex in their time domain structure. Complexity in the time domain is readily discernable by the high frequency electroreceptor systems of gymnotiform and mormyrid electric fish. The addition of phases to the EOD can cloak the EOD from predators, but also provides a substrate for subsequent modification by sexual selection. But, while juveniles and females remain protected from predators, breeding males modify their EODs in ways that enhance their conspicuousness to predators.  相似文献   

17.
Many electric fish species modulate their electric organ discharges (EODs) to produce transient social signals that vary in number and structure. In Apteronotus leptorhynchus, males modulate their EOD more often than females, whereas in Apteronotus albifrons, males and females produce similar numbers of modulations. Sex differences in the number of EOD modulations in A. leptorhynchus are associated with sex differences in substance P in the diencephalic nucleus that controls transient EOD modulations, the CP/PPn. These sex differences in substance P have been hypothesized to regulate sex differences in the production of EOD modulations. To comparatively test this hypothesis, we examined substance P immunoreactivity in the CP/PPn of male and female A. leptorhynchus and A. albifrons. Because the number of EOD modulations is sexually monomorphic in A. albifrons, we predicted no sex difference in substance P in the CP/PPn of this species. Contrary to this prediction, male A. albifrons had significantly more substance P in the CP/PPn than females. This suggests that sex differences in substance P are not sufficient for controlling sex differences in the number of EOD modulations. Modulation structure (frequency excursion and/or duration), however, is also sexually dimorphic in A. leptorhynchus and is another possible behavioral correlate of the sexually dimorphic distribution of substance P. The present study found pronounced sex differences in the structure of EOD modulations in A. albifrons similar to those in A. leptorhynchus. Thus, sex differences in substance P may influence sex differences in the structure, rather than the number, of EOD modulations.  相似文献   

18.
The effects of androgens and estrogen on the external morphology and electric organ discharge (EOD) waveform in Gnathonemus petersii, a weakly discharging electric fish, were investigated. Following preimplant data collection, juvenile and adult fish were gonadectomized and implanted with silastic capsules containing either high or low doses of testosterone (T), dihydrotestosterone (DHT), estradiol-17 beta (E2), or cholesterol. One group of fish was treated with high doses of DHT + E2. Radioimmunoassays revealed that low-dose implants resulted in plasma T levels comparable to and high-dose implants about sixfold greater than those found in adult males imported during breeding season. High-dose E2 implants resulted in higher plasma E2 levels in adults than those in juveniles. At either dose, both androgens induced male-like indentations in the dorsal margin of the anal fin of juveniles and adult females by 4 weeks postimplant. Both low and high doses of T decreased the peak power spectrum frequency (PPSF) of Fourier transformations of EODs and increased the durations of phases 2 and 3 of the EOD in juveniles and adults, but the high doses caused more rapid and profound effects. The two doses of T caused opposite effects on the durations of phases 1 and 4 juveniles. The low dose of T decreased the durations of phases 1 and 4, while the high dose increased them. In adults, the high dose of T increased the duration of phase 1, but had inconsistent effects on the duration of phase 4. Total EOD durations were increased by both doses of T in juveniles, while adults showed inconsistent effects possibly due to individual variability in hormone sensitivity. Compared to T, DHT exerted similar, but less dramatic effects on all measures, but only at high doses. E2 significantly increased adult PPSFs, the first such finding in a mormyrid species. E2 had no effects on juvenile PPSFs, or on adult or juvenile EOD phase durations. The effects of DHT + E2 on PPSF and phases 2 and 3 were similar to those of DHT alone. These findings demonstrate quantifiable steroid-dependent plasticity in the durations of individual phases of EODs in an electric fish and are the first to show that the external morphology in Gnathonemus petersii is androgen-dependent. The results are discussed with regard to methodological considerations and hormone studies involving sex differences in EODs reported for this and other species.  相似文献   

19.
Summary Three species of Gymnotid fish, two species ofHypopomus andRhamphichthys rostratus, each having pulse type electric organ discharges (EOD) of different durations were studied to learn if any correlation exists between the spectral composition of the species specific EOD pulse and the frequency response characteristics of that species' electroreceptors. The receptor population consisted of two major categories (examples in Fig. 3). One category, termed pulse marker receptors, responded to suprathreshold stimulus pulses with a single spike at a short (<2 ms) latency. These receptors were tuned to the higher frequency components of a species' EOD (Fig. 4A) and were always 5 to 10 dB less sensitive than any other electroreceptors within a given species. The second major receptor category, burst duration coders, responded to an electrical stimulus with a burst of spikes at a longer latency, burst length was a function of stimulus amplitude. This second category could be further divided into three sub-categories according to the receptors' frequency response characteristics. The most commonly seen subcategory, wide band receptors (Fig. 4B), responded best to stimuli having frequencies equal to the dominant frequency component of the species' EOD in the two species ofHypopomus studied. A second subcategory, narrow band receptors (Fig. 4 A), had frequency response characteristics similar to those of the pulse marker receptors; however, these had thresholds 10 dB lower than those of the pulse marker. The third subcategory of burst duration coders, low frequency receptors (Fig. 4 C, D), responded best to stimulus frequencies ranging from about 50 to 150 Hz. Mechanisms of coding stimulus amplitude and responses to prolonged sinusoidal electrical stimuli were also studied in the various receptor types.It is suggested that the differences in the major receptor types and the different frequency response characteristics of the electroreceptors within a given species allows the animals to identify and evaluate signals resulting from their own EOD, the EODs of conspecifics and electrical stimuli generated by other species of electric fish.Supported by NIH Grant #1 RO1 NS 12337-01  相似文献   

20.
In this study, a first comparative investigation of all four species of Petrocephalus ( P. bovei , P. bane , P. soudanensis and P. cf. pallidomaculatus ) present in the Upper Volta system and their electric organ discharges (EOD) was conducted. It was found that P. bovei was the most widespread (in terms of habitat use), but in several places P. bovei , P. soudanensis and P. cf. pallidomaculatus occurred syntopically. All species emitted a triphasic signal, and with very few exceptions, the Petrocephalus species of the Upper Volta system could clearly be identified on the basis of their EOD waveforms. The most obvious differences between species in EOD waveforms were in amplitude of the last phase, total duration and fast Fourier transformation (FFT) peak frequency. No sexual dimorphism was present in the EOD of any species although external dimorphism, i.e. an indentation at the base of the anal fin of mature males, was common. The EOD waveform diversity in the Upper Volta principally resembled that found in four sympatric Petrocephalus species from the Ogooué system (Gabon) and might play a role in species recognition and speciation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号