首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of mutant avian c-erbB1 genes results in tissue-specific transformation in chickens. Site-directed mutagenesis was used to generate kinase-defective mutants of several tissue-specific v-erbB transforming mutants by replacement of the ATP-binding lysine residue in the kinase domain with an arginine residue. These kinase-defective v-erbB mutants were analyzed for their in vitro and in vivo transforming potentials. Specifically, kinase-defective mutants of erythroleukemogenic, hemangioma-inducing, and sarcomagenic v-erbB genes were assessed for their oncogenic potential. In vitro transformation potential was assessed by soft-agar colony formation in primary cultures of chick embryo fibroblasts (CEF). In vivo transformation potential was determined by infection of 1-day-old line 0 chicks with concentrated recombinant retrovirus and then monitoring of birds for tumor formation. These transformation assays demonstrate that kinase activity is absolutely essential for transformation by tissue-specific transforming mutants of the avian c-erbB1 gene. Since all of the tissue-specific v-erbB mutants characterized to date exhibit tyrosine kinase activity in vitro but do not transform all tissues in which they are expressed, we conclude that v-erbB-associated tyrosine kinase activity may be necessary but is not sufficient to induce tumor formation.  相似文献   

2.
The transforming capacity of the normal and mutant human EGF receptor (EGFR) was investigated in primary chicken cells. In fibroblasts, both N- and C-terminal truncations resulted in a weak, additive oncogenic activity. However, not even double truncations caused a v-erbB-like phenotype. Upon EGF-binding, on the other hand, both normal and C-terminally truncated EGFRs resembled v-erbB in their fibroblast transforming potential. In erythroblasts, N-terminal truncation was sufficient to induce constitutive self-renewal, which was enhanced by deletion of 32 C-terminal amino acids but abolished by a larger truncation of 202 amino acids. In contrast to the normal EGFR, the receptor lacking 32 C-terminal amino acids resembled v-erbB in conferring erythropoietin independence for spontaneous differentiation to the transformed erythroblasts. Our results indicate that the C-terminal domain of the EGFR is non-essential in fibroblast transformation, but seems to be crucial for both self renewal induction and specificity of receptor function in erythroblasts.  相似文献   

3.
H K Shu  R J Pelley    H J Kung 《Journal of virology》1991,65(11):6173-6180
The v-erbB oncogene isolated from the R (or ES4) strain of avian erythroblastosis virus is capable of inducing erythroleukemia and fibrosarcomas. This oncogene differs from the proto-oncogene c-erbB, the avian homolog of the epidermal growth factor receptor, by its lack of an intact ligand-binding domain as well as additional alterations in its cytoplasmic coding sequences. By contrast, the insertionally activated c-erbB, a variant oncogene, which encodes a product that also lacks the ligand-binding domain but is otherwise unaltered in its cytoplasmic coding sequences, is capable of inducing leukemia but cannot induce sarcomas. In this report, we show that the critical changes for activating the sarcomagenic potential displayed by v-erbB R are two point mutations within the tyrosine kinase domain and an internal deletion of 21 amino acids in the carboxyl-terminal regulatory domain. The removal of the carboxyl-terminal autophosphorylation sites is not obligatory. These activating mutations (Arg-263 to His, Ile-384 to Ser, and the deletion of residues 494 to 514), when introduced singly into the insertionally activated c-erbB, all dramatically increase fibroblast-transforming potential. Arg-263 resides near the highly conserved HRD motif of the kinase domain, and its mutation to His increases the autophosphorylation activity. The other two mutations do not alter the intrinsic kinase activity and presumably affect other aspects of the receptor involved in growth signaling. Therefore, the high transforming potential of v-erbB R is a consequence of synergism among multiple activating mutations.  相似文献   

4.
Avian erythroblastosis virus (AEV) induces acute erythroleukemia and sarcomas in vivo and it transforms erythroblasts and fibroblasts in vitro. The virus has two host cell-derived genes, v-erbA and v-erbB. The latter encodes the oncogenic capacity of the virus, whereas v-erbA enhances the erythroblast transforming effects of v-erbB while being unable to induce neoplasms independently. Recently, human cellular homologues of these viral erb genes have been isolated. The chromosomal locations of two of these genes have been determined using EcoRI-digested DNA prepared from human-mouse somatic cell hybrids. The human c-erbA1 gene has been assigned to chromosome 17 and is located between 17p11 and 17q21. The human c-erbB sequence has been assigned to chromosome 7 and is located between 7pter and 7q22. Thus, in the human genome these genes are on two separate chromosomes. No evidence for the involvement of the human c-erb genes in neoplasia has been found.  相似文献   

5.
Chicken erythroblastosis caused by avian leukosis virus (ALV) is thought to be mediated by activation of the c-erbB/EGF receptor oncogene by a promoter-insertion mechanism. Here we study the proteins expressed by two ALV-induced leukemias and compare them with the avian EGF receptor and with the oncogene product of avian erythroblastosis virus (v-erbB) which was shown to be a truncated EGF receptor. It appears that the two leukemias express truncated EGF receptors of slightly different sizes with intrinsic tyrosine kinase activity. Hence, acute and chronic retroviruses utilize a common pathway for transformation. Moreover, the proteins expressed in the leukemias are similar to the avian EGF receptor with respect to their phosphopeptide maps, suggesting that they do not carry the C-terminal deletion characteristic of v-erbB.  相似文献   

6.
The retroviral oncogene S3-v-erbB is a transduced, truncated form of the avian EGF (ErbB-1) receptor. Infection of avian fibroblasts with a retroviral vector expressing S3-v-ErbB results in ligand-independent cell transformation, which is accompanied by the assembly of a transformation-specific phosphoprotein signaling complex and anchorage-independent cell growth. It previously had been reported, using lysine-721 mutants (K721), that kinase domain function was required for ErbB-mediated cell transformation. However, since these initial reports, several studies using aspartate-813 mutants (D813) have demonstrated the ability of kinase-impaired ErbB receptors to induce mitogenic signal transduction pathways and cell transformation in a ligand-dependent manner. To determine the necessity of ErbB receptor kinase domain catalytic activity in ligand-independent cell transformation, we created S3-v-ErbB-K(-), a kinase-impaired oncoprotein constructed by replacing aspartate-813 with alanine (D813A). Subcellular routing as well as cell surface membrane and nuclear localization of the S3-v-ErbB-K(-) mutant receptor were unaffected by impairment of kinase activity. In contrast, avian fibroblasts expressing S3-v-ErbB-K(-) do not form the characteristic transformation-specific phosphoprotein complex, or induce soft agar colony growth in vitro. These results suggest that in contrast to ligand-dependent oncogenic signaling, ligand-independent cell transformation by a constitutively activated mutant form of the EGF receptor requires receptor kinase catalytic activity. In addition, these results demonstrate that phosphorylation and assembly of downstream signaling complexes require tyrosine phosphorylation events that are directly mediated by oncogenic forms of the EGF receptor.  相似文献   

7.
8.
T Gilmore  J E DeClue  G S Martin 《Cell》1985,40(3):609-618
The v-erbB gene product of avian erythroblastosis virus (AEV) has extensive homology with the receptor for epidermal growth factor (EGF). We report here that chicken embryo fibroblasts (CEF) transformed by AEV show enhanced tyrosine phosphorylation of a number of cellular polypeptides, including the 36 kd protein, which is phosphorylated in avian sarcoma virus-transformed fibroblasts, and the 42 kd protein, which is phosphorylated in mitogen-stimulated cells. CEF infected by AEV mutants with deletions in v-erbA showed enhanced tyrosine phosphorylation, whereas CEF infected by mutants with deletions in v-erbB did not. When membranes from AEV-transformed cells were incubated with gamma-32P-ATP, both the v-erbB gene product and the 36 kd cellular protein became phosphorylated at tyrosine. These results indicate that the v-erbB protein induces tyrosine phosphorylation in vivo and in vitro, and suggest that, like the EGF receptor, it possesses tyrosine-specific protein kinase activity.  相似文献   

9.
Chicken cell DNA contains sequences which are homologous to the avian erythroblastosis virus oncogene v-erb. These cellular sequences (c-erb) have been isolated from a library of chicken cell DNA fragments generated by partial digestion with AluI and HaeIII and shown to be shared by at least two loci in the chicken DNA. One of them, denoted c-erbB, contains approximately 1.8 kilobase pairs of chicken DNA homologous to the 3' part of the v-erb oncogene (v-erbB). Restriction mapping studies show that the c-erbB DNA sequences homologous to v-erbB are distributed among six EcoRI fragments located in a single genomic region. Heteroduplexes between v-erbB in viral RNA and cloned c-erbB DNA show that the chicken DNA sequences homologous to v-erbB are interrupted by 11 DNA sequences not present in the v-erb oncogene. We conclude from our data that the c-erbB locus might represent the cellular progenitor for the v-erbB domain of the v-erb oncogene.  相似文献   

10.
The transforming gene product of avian erythroblastosis virus, v-erbB, is derived from the epidermal growth factor (EGF) receptor but has lost its extracellular ligand-binding domain and was mutated in its cytoplasmic portion, which is thought to be responsible for biological signal generation. We have repaired the deletion of extracellular EGF-binding sequences and investigated the functional consequences of cytoplasmic erbB mutations. Within the resulting EGF receptors, the autophosphorylation activities of the cytoplasmic domains of v-erbB-H and v-erbB-ES4 were fully ligand dependent in intact cells. However, the mitogenic and transforming signaling activities of an EGF receptor carrying v-erbB-ES4 (but not v-erbB-H) cytoplasmic sequences remained ligand independent, whereas those of a receptor with a v-erbB-H cytoplasmic domain were regulated by EGF or transforming growth factor alpha. Thus, structural alterations in the cytoplasmic domain of growth factor receptor tyrosine kinases may induce constitutive signaling activity without autophosphorylation. These findings provide new insight into the mechanism of receptor-mediated signal transduction and suggest a novel alternative for subversion of cellular control mechanisms and proto-oncogene activation.  相似文献   

11.
12.
By using Southern blot analysis, we found that in two cases of human glioblastoma multiforme, cells carried amplified c-erbB genes which bore short deletion mutations within the ligand-binding domain of the epidermal growth factor (EGF) receptor. The products of these mutated c-erbB genes were about 30 kilodalton (kDa) smaller than the normal 170-kDa EGF receptor, and the tumor cell membrane fractions containing the 140-kDa abnormal EGF receptor showed a significant elevation of tyrosine kinase activity without its ligand. In view of the similarity to the activated viral and cellular erbB genes in the avian system, these mutated and overexpressed EGF receptors might play a role in the onset or development of human glioblastoma cells.  相似文献   

13.
v-erbA cooperates with sarcoma oncogenes in leukemic cell transformation   总被引:33,自引:0,他引:33  
P Kahn  L Frykberg  C Brady  I Stanley  H Beug  B Vennstr?m  T Graf 《Cell》1986,45(3):349-356
The v-erbB, v-src, v-fps, v-sea, and v-Ha-ras oncogenes induce avian erythroid progenitor cells to self-renew in an erythropoietin-independent manner. These transformed erythroblasts retain both their capacity to differentiate into erythrocytes and their requirement for complex growth media. However, previous studies showed that erythroblasts transformed by v-erbB plus v-erbA (which by itself is not oncogenic) are blocked in differentiation and grow in standard media. Here we show that the introduction of v-erbA into erythroblasts transformed with v-src, v-fps, v-sea, or v-Ha-ras likewise induces a fully transformed phenotype. It also reduces the capacity of ts sea- and ts erbB-transformed erythroblasts to differentiate terminally in an erythropoietin-dependent manner after a temperature shift. Cooperativity involving v-erbA also occurs in vivo since chicks infected with a retroviral construct encoding v-erbA and v-src develop both acute erythroblastosis and sarcomas.  相似文献   

14.
Phospholipase D (PLD) activity is elevated in response to most mitogenic signals. Two mammalian PLD genes (PLD1 and PLD2) have been cloned and their gene products have been characterized. PLD1 is a downstream target of the Ras/RalA GTPase cascade implicated in mitogenic and oncogenic signaling. Consistent with a role in mitogenic signaling, elevated expression of PLD1 transforms cells overexpressing the epidermal growth factor (EGF) receptor (EGFR). However, PLD2 colocalizes with the EGFR in caveolin-enriched light membrane microdomains. We therefore investigated whether PLD2 could also contribute to the transformation of cells overexpressing a tyrosine kinase. We report here that elevated expression of PLD2 transforms rat fibroblasts overexpressing either the EGFR or c-Src. Since overexpression of a tyrosine kinase is a common genetic alteration in several human cancers, these data suggest that elevation of either PLD1 or PLD2 may contribute to the progression to a malignant phenotype in cells with elevated tyrosine kinase activity.  相似文献   

15.
H Beug  M J Hayman 《Cell》1984,36(4):963-972
The v-erbB gene of avian erythroblastosis virus (AEV) codes for an integral plasma membrane glycoprotein, gp74erbB. Expression of gp74erbB and its intracellular precursors, gp66erbB and gp68erbB, has been studied in cells transformed by two temperature-sensitive mutants of AEV. After shift to 42 degrees C, the processing of gp68erbB is blocked in tsAEV-transformed, but not in wtAEV-transformed, erythroblasts and fibroblasts. In addition, gp74erbB disappears from the surface of tsAEV cells within 12 hr after shift. Thus tsAEV mutants probably bear a lesion in v-erbB that affects the maturation and subcellular localization of gp74erbB. The tsAEV erythroblasts, when "committed" to differentiation by a pulse-shift to 42 degrees C, reexpress gp74erbB during terminal differentiation at 36 degrees C. This suggests that tsAEV erythroblasts become insensitive to the transforming functions of gp74erbB at a certain stage of differentiation.  相似文献   

16.
Many ligand-independent receptor tyrosine kinases are tumorigenic. The biochemical signals that mediate ligand-independent transformation of cells by these transmembrane receptors are poorly defined. In this report, we demonstrate that a constitutively activated mutant epidermal growth factor receptor (v-ErbB) induces the formation of a transformation-specific signaling module that complexes with myosin II. The components of this signaling complex include the signal adapter proteins Shc, Grb2, and Nck, and tyrosine-phosphorylated forms of p21-activated kinase (Pak), caldesmon, and myosin light chain kinase. Transformation-specific, tyrosine phosphorylation of Pak enhances the catalytic activity of this serine/threonine kinase. Furthermore, the tyrosine phosphorylation of Pak is Rho-, but not Ras-, Rac-, or Cdc42-dependent. These results demonstrate that a ligand-independent epidermal growth factor receptor mutant can transduce oncogenic signals that are distinct from ligand-dependent, mitogenic signals. In addition, these data provide evidence for the coupling of oncogenic receptor tyrosine kinases with the actomyosin molecular motor. This myosin-associated signaling module may mediate some of the biochemical changes of myosin found in v-ErbB- transformed fibroblasts, thereby contributing to the regulation of the mechanical forces governing cellular adhesion, cytoskeletal tension, and, hence, anchorage-independent cell growth.  相似文献   

17.
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.  相似文献   

18.
K Damm  H Beug  T Graf    B Vennstrm 《The EMBO journal》1987,6(2):375-382
We have characterized the v-erbA and v-erbB oncogenes of td359, a transformation-defective mutant of avian erythroblastosis virus (AEV) unable to transform erythroblasts, and the revertant r12, obtained after in vivo passage of the mutant. Molecular cloning, sequencing, construction of chimeric viruses and testing of their oncogenic capacities revealed that both oncogenes of td359 are mutated and biologically defective. The r12 virus, although still containing a mutant v-erbB gene, recovered its erythroid transforming potential by acquiring a highly active gag-erbA gene. These results demonstrate that two co-operating oncogenes, an active v-erbA and a defective v-erbB, can transform a cell type not transformed by either oncogene alone. Furthermore, a single amino acid substitution inactivated the td359 v-erbA protein and we show that its reversion led to the reactivation of the protein. This lesion is located in the same region as several previously described inactivating mutations of glucocorticoid receptors, suggesting that the structure/function relationship of the virally transduced form of the c-erbA/thyroid hormone receptor is closely similar to that of steroid hormone receptors.  相似文献   

19.
Avian erythroblastosis virus (AEV) induces erythroblastosis and fibrosarcomas. The viral erbB protein is required for AEV-mediated oncogenesis. To explore the structural aspects of the v-erbB polypeptide necessary for its oncogenic function, we created a series of small in-frame insertions in different domains of the v-erbB oncogene. AEV genomes bearing lesions within the v-erbB kinase domain demonstrated a drastically decreased ability to transform avian fibroblasts, establishing a functional role for this structurally conserved oncogene domain. In contrast, mutations in the extracellular domain, between the transmembrane region and the kinase domain, or at the extreme C terminus of the v-erbB protein had no effect on AEV-mediated fibroblast transformation. One lesion within the v-erbB kinase domain, a 10-amino acid insertion, produced a temperature-sensitive mutant capable of fibroblast transformation at 36 degrees C but not at 41 degrees C, suggesting that small in-frame insertions have general utility for the in vitro creation of conditional mutants.  相似文献   

20.
Analysis of the structure and function of a protein such as the epidermal growth factor receptor is facilitated by the use of antibodies directed against discrete portions of the protein. Here, we describe the characterization and use of antibodies directed against synthetic peptides corresponding to specific portions of the epidermal growth factor receptor and/or v-erbB protein. In particular, one useful antiserum has allowed us to compare the protein kinase activities of the epidermal growth factor receptor and the v-erbB proteins and to conclude that the v-erbB protein is a protein-tyrosine specific kinase as is its homologue the avian epidermal growth factor receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号