首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which DNA damage delays the anaphase onset is controversial. Some studies implicate a DNA damage checkpoint , whereas other studies invoke a spindle checkpoint . To resolve this issue, we compared the effects of random DNA breaks induced by X-irradiation to site-specific I-CreI endonuclease-induced chromosome breaks on cell-cycle progression in wild-type and checkpoint-defective Drosophila neuroblasts. We found that both the BubR1 spindle checkpoint pathway and the Grp/Chk1 DNA damage checkpoint pathway are involved in delaying the metaphase/anaphase transition after extensive X-irradiation-induced DNA damage, whereas Grp/Chk1, but not BubR1, is required to delay anaphase onset in the presence of I-CreI-induced double-strand breaks. On the basis of these results, we propose that DNA damage in nonkinetochore regions produces a Grp/Chk1 DNA-damage-checkpoint-mediated delay in the metaphase/anaphase transition.  相似文献   

2.
The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila). DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS), on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.  相似文献   

3.
BACKGROUND: Studies in unicellular systems have established that DNA damage by irradiation invokes a checkpoint that acts to stall cell division. During metazoan development, the modulation of cell division by checkpoints must occur in the context of gastrulation, differential gene expression and changes in cell cycle regulation. To understand the effects of checkpoint activation in a developmental context, we examined the effect of X-rays on post-blastoderm embryos of Drosophila melanogaster. RESULTS: In Drosophila, DNA damage was previously found to delay anaphase chromosome separation during cleavage cycles that lack a G2 phase. In post-blastoderm cycles that included a G2 phase, we found that irradiation delayed the entry into mitosis. Gastrulation and the developmental program of string (Cdc25) gene expression, which normally regulates the timing of mitosis, occurred normally after irradiation. The radiation-induced delay of mitosis accompanied the exclusion of mitotic cyclins from the nucleus. Furthermore, a mutant form of the mitotic kinase Cdk1 that cannot be inhibited by phosphorylation drove a mitotic cyclin into the nucleus and overcame the delay of mitosis induced by irradiation. CONCLUSIONS: Developmental changes in the cell cycle, for example, the introduction of a G2 phase, dictate the response to checkpoint activation, for example, delaying mitosis instead of or in addition to delaying anaphase. This unprecedented finding suggests that different mechanisms are used at different points during metazoan development to stall cell division in response to checkpoint activation. The delay of mitosis in post-blastoderm embryos is due primarily to inhibitory phosphorylation of Cdk1, whereas nuclear exclusion of a cyclin-Cdk1 complex might play a secondary role. Delaying cell division has little effect on gastrulation and developmentally regulated string gene expression, supporting the view that development generally dictates cell proliferation and not vice versa.  相似文献   

4.
The metaphase-anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies. Drosophila cells lacking either ROD or Zw10 exhibit a phenotype that is similar to that of bub1 mutants - they do not arrest in metaphase in response to spindle damage, but instead separate sister chromatids, degrade cyclin B and exit mitosis. These are the first checkpoint components to be identified that do not have obvious homologues in budding yeast.  相似文献   

5.
BACKGROUND: Wee1 kinases delay entry into mitosis by phosphorylating and inactivating cyclin-dependent kinase 1 (Cdk1). Loss of this activity in many systems, including Drosophila, leads to premature mitotic entry. RESULTS: We report here that Drosophila Wee1 (dwee1) mutant embryos show mitotic-spindle defects that include ectopic foci of microtubule organization, formation of multipolar spindles from adjacent centrosome pairs, and promiscuous interactions between neighboring spindles. Furthermore, centrosomes are displaced from the embryo cortex in dwee1 mutants. These defects are not observed to the same extent in embryos in which nuclei also enter mitosis prematurely as a result of a lack of checkpoint control or in embryos with elevated Cdk1 activity. dWee1 physically interacts with members of the gamma-tubulin ring complex (gammaTuRC), and gamma-tubulin is phosphorylated in a dwee1-dependent manner in embryo extracts. CONCLUSIONS: Some of the abnormalities in dwee1 mutant embryos cannot be explained by premature entry into mitosis or bulk elevation of Cdk1 activity. Instead, dWee1 is also required for phosphorylation of gamma-tubulin, centrosome positioning, and mitotic-spindle integrity. We propose a model to account for these requirements.  相似文献   

6.
Sakurai H  Okado M  Ito F  Kawasaki K 《FEBS letters》2011,585(12):1923-1928
Drosophila melanogaster RecQ5, a member of the RecQ family, is expressed in early embryos. The loss of maternally-derived RecQ5 leads to spontaneous mitotic defects in syncytial embryos. We demonstrate that the mitotic defects are derived from anaphase DNA bridges. Pairs of daughter nuclei that had been linked by the bridges concurrently exited from the cycle and were eliminated by Chk2-dependent centrosome inactivation. These results suggest that the lack of RecQ5 leads to spontaneous double-stranded DNA breaks (DSBs). RecQ5 may function in the resolution of anaphase DNA bridges during mitosis or in DSB repair during interphase in syncytial Drosophila embryos.  相似文献   

7.
Jacobs HW  Keidel E  Lehner CF 《The EMBO journal》2001,20(10):2376-2386
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.  相似文献   

8.
Takada S  Kelkar A  Theurkauf WE 《Cell》2003,113(1):87-99
In syncytial Drosophila embryos, damaged or incompletely replicated DNA triggers centrosome disruption in mitosis, leading to defects in spindle assembly and anaphase chromosome segregation. The damaged nuclei drop from the cortex and are not incorporated into the cells that form the embryo proper. A null mutation in the Drosophila checkpoint kinase 2 tumor suppressor homolog (DmChk2) blocks this mitotic response to DNA lesions and also prevents loss of defective nuclei from the cortex. In addition, DNA damage leads to increased DmChk2 localization to the centrosome and spindle microtubules. DmChk2 is therefore essential for a "mitotic catastrophe" signal that disrupts centrosome function in response to genotoxic stress and ensures that mutant and aneuploid nuclei are eliminated from the embryonic precursor pool.  相似文献   

9.
The Drosophila mutation, quartet, affects development at points in the life cycle that require intense mitotic activity. Examination of embryos affected by the maternal effect of quartet has revealed defects that can be attributed to incomplete chromosome separation at mitosis. These defects include uneven spacing of nuclei, strands of DNA creating bridges between nuclei, and abnormal amounts of DNA per nucleus. Nuclei in quartet-affected embryos also have a greater-than-normal number of centrosomes. Immunofluorescent examination of the spindles in quartet-affected embryos has revealed tripolar spindles and adjacent spindles that share a common spindle pole. Finally, chromosome separation distance was measured in anaphase and telophase spindles in quartet-affected embryos and found to be blocked in anaphase. Examination of mitotic figures in quartet larvae revealed a reduced mitotic index and an elevated frequency of abnormal mitotic figures. quartet could encode a function necessary for the disengagement of chromosomes in mitosis, for kinetochore function or for function of a spindle motor. Mutations in quartet prevent the post-translational modification of three abundant proteins. These proteins may be involved in chromosome separation in mitosis.  相似文献   

10.
Recent data from multiple organisms indicate that gamma-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the gamma-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (approximately 6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that gamma-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control.  相似文献   

11.
Cdk1-CycB plays a key role in regulating many aspects of cell-cycle events, such as cytoskeletal dynamics and chromosome behavior during mitosis. To investigate how Cdk1-CycB controls the coordination of these events, we performed a dosage-sensitive genetic screen, which is based on the observations that increased maternal CycB (four extra gene copies) leads to higher Cdk1-CycB activity in early Drosophila embryos, delays anaphase onset, and generates a sensitized non-lethal phenotype at the blastoderm stage (defined as six cycB phenotype). Here, we report that mutations in the gene three rows (thr) enhance, while mutations in pimples (pim, encoding Drosophila Securin) or separase (Sse) suppress, the sensitized phenotype. In Drosophila, both Pim and Thr are known to regulate Sse activity, and activated Sse cleaves a Cohesin subunit to initiate anaphase. Compared with the six cycB embryos, reducing Thr in embryos with more CycB further delays the initiation of anaphase, whereas reducing either Pim or Sse has the opposite effect. Furthermore, nuclei move slower during cortical migration in embryos with higher Cdk1-CycB activity, whereas reducing either Pim or Sse suppresses this phenotype by causing a novel nuclear migration pattern. Therefore, our genetic screen has identified all three components of the complex that regulates sister chromatid separation, and our observations indicate that interactions between Cdk1-CycB and the Pim-Thr-Sse complex are dosage sensitive.  相似文献   

12.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

13.
In mitosis and meiosis, cohesion is maintained at the centromere until sister-chromatid separation. Drosophila MEI-S332 is essential for centromeric cohesion in meiosis and contributes to, though is not absolutely required for, cohesion in mitosis. It localizes specifically to centromeres in prometaphase and delocalizes at the metaphase-anaphase transition. In mei-S332 mutants, centromeric sister-chromatid cohesion is lost at anaphase I, giving meiosis II missegregation. MEI-S332 is the founding member of a family of proteins important for chromosome segregation. One likely activity of these proteins is to protect the cohesin subunit Rec8 from cleavage at the metaphase I-anaphase I transition. Although the family members do not show high sequence identity, there are two short stretches of homology, and mutations in conserved residues affect protein function. Here we analyze the cis- and trans-acting factors required for MEI-S332 localization. We find a striking correlation between domains necessary for MEI-S332 centromere localization and conserved regions within the protein family. Drosophila MEI-S332 expressed in human cells localizes to mitotic centromeres, further highlighting this functional conservation. MEI-S332 can localize independently of cohesin, assembling even onto unreplicated chromatids. However, the separase pathway that regulates cohesin dissociation is needed for MEI-S332 delocalization at anaphase.  相似文献   

14.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

15.
To analyze the effects of the HIV-Tat-tubulin interaction, we microinjected HIV-Tat purified protein into Drosophila syncytial embryos. Following the Tat injection, altered timing of the cortical nuclear cycles was observed; specifically, the period between the nuclear envelope breakdown and anaphase initiation was lengthened as was the period between anaphase initiation and the formation of the next nuclear envelope. These two periods correspond to kinetochore alignment at metaphase and to mitosis exit, respectively. We also demonstrated that these two delays are the consequence of damage specifically induced by Tat on kinetochore alignment and on the timing of sister chromatid segregation at anaphase. Furthermore, we show that the expression of Tat in Drosophila larvae brain cells produces a significant percentage of polyploid and aneuploid cells. The results reported here indicate that Tat impairs the mitotic process and that Tat-tubulin interaction appears to be responsible for the observed defects. The presence of polyploid and aneuploid cells is consistent with a delay or arrest in the M phase of a substantial fraction of the cells expressing Tat, suggesting that mitotic spindle checkpoints are overridden following Tat expression.  相似文献   

16.
17.
Crest J  Oxnard N  Ji JY  Schubiger G 《Genetics》2007,175(2):567-584
The Drosophila embryo is a promising model for isolating gene products that coordinate S phase and mitosis. We have reported before that increasing maternal Cyclin B dosage to up to six copies (six cycB) increases Cdk1-Cyclin B (CycB) levels and activity in the embryo, delays nuclear migration at cycle 10, and produces abnormal nuclei at cycle 14. Here we show that the level of CycB in the embryo inversely correlates with the ability to lengthen interphase as the embryo transits from preblastoderm to blastoderm stages and defines the onset of a checkpoint that regulates mitosis when DNA replication is blocked with aphidicolin. A screen for modifiers of the six cycB phenotypes identified 10 new suppressor deficiencies. In addition, heterozygote dRPA2 (a DNA replication gene) mutants suppressed only the abnormal nuclear phenotype at cycle 14. Reduction of dRPA2 also restored interphase duration and checkpoint efficacy to control levels. We propose that lowered dRPA2 levels activate Grp/Chk1 to counteract excess Cdk1-CycB activity and restore interphase duration and the ability to block mitosis in response to aphidicolin. Our results suggest an antagonistic interaction between DNA replication checkpoint activation and Cdk1-CycB activity during the transition from preblastoderm to blastoderm cycles.  相似文献   

18.
We show that the sequence of Drosophila cyclin B has greater identity with B-type cyclins from other animal phyla than with Drosophila cyclin A, suggesting that the two cyclins have distinct roles that have been maintained in evolution. Cyclin A is not detectable in unfertilized eggs and is present at low levels prior to cellularization of the syncytial embryo. In contrast, the levels of cyclin B remain uniformly high throughout these developmental stages. In cells within cellularized embryos and the larval brain, cyclin A accumulates to peak levels in prophase and is degraded throughout the period in which chromosomes are becoming aligned on the metaphase plate. The degradation of cyclin B, on the other hand, does not occur until the metaphase-anaphase transition. In cells arrested at c-metaphase by treating with microtubule destabilizing drugs to prevent spindle formation, cyclin A has been degraded in the arrested cells, whereas cyclin B is maintained at high levels. These observations suggest that cyclin A has a role in the G2-M transition that is independent of spindle formation, and that entry into anaphase is a key requirement for the degradation of cyclin B.  相似文献   

19.
The dual-specificity phosphatase CDC25B, a key regulator of CDK/Cyclin complexes, is considered as the starter of mitosis. It is an unstable protein, degraded by the proteasome, but often over-expressed in various human cancers. Based on experiments carried out in Xenopus eggs, and on video microscopy studies in mammalian cells, it has been proposed that human CDC25B degradation is dependent of the F-box protein bTrCP, but the involvement of this latter protein was not formally demonstrated yet. Here, we show that indeed, in mammalian cells, bTrCP participates to CDC25B turn-over, and is required for the complete degradation of CDC25B at the metaphase-anaphase transition. Using a stabilized mutant of CDC25B, which cannot interact anymore with bTrCP, we further show that, during late phases of mitosis, reduced degradation of CDC25B leads to an extended window of expression of the protein, which in turn induces a delay in mitosis exit and entails mitotic defects such as chromosomes missegregation. These findings show that a dysfunction in the rapid and precisely controlled degradation of CDC25B at the metaphase-anaphase transition is sufficient to cause genomic instability and suggest that, in human tissues, pathologic stabilization or untimed expression of CDC25B could contribute to tumorigenesis.  相似文献   

20.
The earliest embryonic mitoses in Drosophila, as in other animals except mammals, are viewed as synchronous and of equal duration. However, we observed that total cell-cycle length steadily increases after cycle 7, solely owing to the extension of interphase. Between cycle 7 and cycle 10, this extension is DNA-replication checkpoint independent, but correlates with the onset of Cyclin B oscillation. In addition, nuclei in the middle of embryos have longer metaphase and shorter anaphase than nuclei at the two polar regions. Interestingly, sister chromatids move faster in anaphase in the middle than the posterior region. These regional differences correlate with local differences in Cyclin B concentration. After cycle 10, interphase and total cycle duration of nuclei in the middle of the embryo are longer than at the poles. Because interphase also extends in checkpoint mutant (grapes) embryo after cycle 10, although less dramatic than wild-type embryos, interphase extension after cycle 10 is probably controlled by both Cyclin B limitation and the DNA-replication checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号