首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.  相似文献   

2.
Few methods exist to study cartilage mechanics in small animal joints due to the difficulties associated with handling small tissue samples. In this study, we apply an osmotic loading method to quantify the intrinsic material properties of articular cartilage in small animal joints. Cartilage samples were studied from the femoral condyle and tibial plateau of two-month old guinea pigs. Swelling strains were measured using confocal fluorescence scanning microscopy in samples subjected to osmotic loading. A histochemical staining method was developed and calibrated for quantification of negative fixed charge density in guinea pig cartilage. Site-matched swelling strain data and fixed charge density values were then used with a triphasic theoretical model for cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. Moduli obtained in this study (7.2 MPa femoral condyle; 10.8 MPa, tibial plateau) compare well with previously reported values for the tensile moduli of human and other animal cartilages determined from uniaxial tension experiments. This study provides the first available data for material properties and fixed charge density in cartilage from the guinea pig knee and suggests a promising method for tracking changes in cartilage mechanics in small animal models of degeneration.  相似文献   

3.
Nonuniform swelling-induced residual strains in articular cartilage   总被引:5,自引:0,他引:5  
Swelling effects in cartilage originate from an interstitial osmotic pressure generated by the presence of negatively charged proteoglycans in the tissue. This swelling pressure gives rise to a non-zero residual strain in the cartilage solid matrix in the absence of externally applied loads. Previous studies have quantified swelling effects in cartilage as volumetric or dimensional change of excised samples in varying osmotically active solutions. This study presents a new optical technique for measuring two-dimensional swelling-induced residual strain fields in planar samples of articular cartilage attached to the bone (i.e., in situ). Osmotic loading was applied to canine cartilage bone samples by equilibration in external baths of varying NaCl concentration. Non-zero swelling-induced strains were measured in physiological saline, giving evidence of the existence of residual strains in articular cartilage. Only one component of planar strain (i.e., in thickness direction) was found to be non-zero. This strain was found to be highly non-uniform in the thickness direction, with evidence of compressive strain in the deep zone of cartilage and tensile strain in the middle and surface zones. The obtained results can be used to characterize the material properties of the articular cartilage solid matrix, with estimated values of 26 M Pa for the tensile modulus for middle zone cartilage. The method provides the basis to obtain material properties of the cartilage solid matrix from a simple, free-swelling test and may be useful for quantifying changes in cartilage properties with injury, degeneration and repair.  相似文献   

4.
Swelling and curling behaviors of articular cartilage.   总被引:5,自引:0,他引:5  
A new experimental method was developed to quantify parameters of swelling-induced shape change in articular cartilage. Full-thickness strips of cartilage were studied in free-swelling tests and the swelling-induced stretch, curvature, and areal change were measured. In general, swelling-induced stretch and curvature were found to increase in cartilage with decreasing ion concentration, reflecting an increasing tendency to swell and "curl" at higher swelling pressures. An exception was observed at the articular surface, which was inextensible for all ionic conditions. The swelling-induced residual strain at physiological ionic conditions was estimated from the swelling-induced stretch and found to be tensile and from 3-15 percent. Parameters of swelling were found to vary with sample orientation, reflecting a role for matrix anisotropy in controlling the swelling-induced residual strains. In addition, the surface zone was found to be a structurally important element, which greatly limits swelling of the entire cartilage layer. The findings of this study provide the first quantitative measures of swelling-induced residual strain in cartilage ex situ, and may be readily adapted to studies of cartilage swelling in situ.  相似文献   

5.
The present work describes the influence of both vitamin C (VC) and mechanical stimulation on development of the extracellular matrix (ECM) and improvement in mechanical properties of a chondrocyte-agarose construct in a regenerating tissue disease model of hyaline cartilage. We used primary bovine chondrocytes and two types of VC, ascorbic acid (AsA) as an acidic form and ascorbic acid 2-phosphate (A2P) as a non-acidic form, and applied uniaxial compressive strain to the tissue model using a purpose-built bioreactor. When added to the medium in free-swelling culture conditions, A2P downregulated development of ECM and suppressed improvement of the tangent modulus more than AsA. By contrast, application of mechanical stimulation to the construct both increased the tangent modulus more than the free-swelling group containing A2P and enhanced the ECM network of inner tissue to levels nearly as high as the free-swelling group containing AsA. Thus, mechanical stimulation and strain appears to enhance the supply of nutrients and improve the synthesis of ECM via mechanotransduction pathways of chondrocytes. Therefore, we suggest that mechanical stimulation is necessary for homogenous development of ECM in a cell-associated construct with a view to implantation of a large-sized articular cartilage defect.  相似文献   

6.
The purpose of this study was to explore the triphasic mechanical properties of osteoarthritic cartilage with different pathological grades. First, samples of cartilage from rabbits with different stages of osteoarthritis (OA) were graded. Following this, the cartilage was strained by a swelling experiment, and changes were measured using a high-frequency ultrasound system. The result, together with fixed charge density and water volume fraction of cartilage samples, was used to estimate the uniaxial modulus of the cartilage tissue, based on a triphasic model. For the control cartilage samples, the uniaxial elastic modulus on the cartilage surface was lower than those in the middle and deep layers. With an increase in the OA grade, the uniaxial elastic modulus of the surface, middle and deep layers decreased. A significant difference was found in the surface elastic modulus of different OA grades (P<0.01), while no significant differences were identified for OA cartilages of Grades 1 and 2 in the middle and deep layers (P<0.01). Compared with Grades 1 and 2, there was a significant reduction in the elastic modulus in the middle and deep layers of Grade 3 OA cartilage (P<0.05). Overall, this study may provide a new quantitative method to evaluate the severity of OA using the mechanical properties of cartilage tissue.  相似文献   

7.
The tensile and compressive properties of human glenohumeral cartilage were determined by testing 120 rectangular strips in uniaxial tension and 70 cylindrical plugs in confined compression, obtained from five human glenohumeral joints. Specimens were harvested from five regions across the articular surface of the humeral head and two regions on the glenoid. Tensile strips were obtained along two orientations, parallel and perpendicular to the split-line directions. Two serial slices through the thickness, corresponding to the superficial and middle zones of the cartilage layers, were prepared from each tensile strip and each compressive plug. The equilibrium tensile modulus and compressive aggregate modulus of cartilage were determined from the uniaxial tensile and confined compression tests, respectively. Significant differences in the tensile moduli were found with depth and orientation relative to the local split-line direction. Articular cartilage of the humeral head was significantly stiffer in tension than that of the glenoid. There were significant differences in the aggregate compressive moduli of articular cartilage between superficial and middle zones in the humeral head. Furthermore, tensile and compressive stress-strain responses exhibited nonlinearity under finite strain, while the tensile modulus differed by up to two orders of magnitude from the compressive aggregate modulus at 0% strain, demonstrating a high degree of tension-compression nonlinearity. The complexity of the mechanical properties of human glenohumeral cartilage was exposed in this study, showing anisotropy, inhomogeneity, and tension-compression nonlinearity within the same joint. The observed differences in the tensile properties of human glenohumeral cartilage suggest that the glenoid may be more susceptible to cartilage degeneration than the humeral head.  相似文献   

8.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

9.
The purposes of this study were to determine the in situ functional and material properties of articular cartilage in an experimental model of joint injury, and to quantify the corresponding in situ joint contact mechanics. Experiments were performed in the anterior cruciate ligament (ACL) transected knee of the cat and the corresponding, intact contralateral knee, 16 weeks following intervention. Cartilage thickness, stiffness, effective Young’s modulus, and permeability were measured and derived from six locations of the knee. The total contact area and peak pressures in the patellofemoral joint were obtained in situ using Fuji Pressensor film, and comparisons between experimental and contralateral joint were made for corresponding loading conditions. Total joint contact area and peak pressure were increased and decreased significantly (=0.01), respectively, in the experimental compared to the contralateral joint. Articular cartilage thickness and stiffness were increased and decreased significantly (=0.01), respectively, in the experimental compared to the contralateral joint in the four femoral and patellar test locations. Articular cartilage material properties (effective Young’s modulus and permeability) were the same in the ACL-transected and intact joints. These results demonstrate for the first time the effect of changes in articular cartilage properties on the load transmission across a joint. They further demonstrate a substantial change in the joint contact mechanics within 16 weeks of ACL transection. The results were corroborated by theoretical analysis of the contact mechanics in the intact and ACL-transected knee using biphasic contact analysis and direct input of cartilage properties and joint surface geometry from the experimental animals. We conclude that the joint contact mechanics in the ACL-transected cat change within 16 weeks of experimental intervention.  相似文献   

10.
Compression tests have often been performed to assess the biomechanical properties of full-thickness articular cartilage. We tested whether the apparent homogeneous strain-dependent properties, deduced from such tests, reflect both strain- and depth-dependent material properties. Full-thickness bovine articular cartilage was tested by oscillatory confined compression superimposed on a static offset up to 45%. and the data fit to estimate modulus, permeability, and electrokinetic coefficient assuming homogeneity. Additional tests on partial-thickness cartilage were then performed to assess depth- and strain-dependent properties in an inhomogeneous model, assuming three discrete layers (i = 1 starting from the articular surface, to i = 3 up to the subchondral bone). Estimates of the zero-strain equilibrium confined compression modulus (H(A0)), the zero-strain permeability (kp0) and deformation dependence constant (M), and the deformation-dependent electrokinetic coefficient (ke) differed among individual layers of cartilage and full-thickness cartilage. HiA0 increased from layer 1 to 3 (0.27 to 0.71 MPa), and bracketed the apparent homogeneous value (0.47 MPa). ki(p0) decreased from layer 1 to 3 (4.6 x 10(-15) to 0.50 x 10(-15) m2/Pa s) and was less than the homogeneous value (7.3 x 10(-15) m2/Pa s), while Mi increased from layer 1 to 3 (5.5 to 7.4) and became similar to the homogeneous value (8.4). The amplitude of ki(e) increased markedly with compressive strain, as did the homogeneous value: at low strain, it was lowest near the articular surface and increased to a peak in the middle-deep region. These results help to interpret the biomechanical assessment of full-thickness articular cartilage.  相似文献   

11.
The growth, maintenance and ossification of cartilage are fundamental to skeletal development and are regulated throughout life by the mechanical cues that are imposed by physical activities. Finite element computer analyses have been used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and articular cartilage thickness distributions. Using single-phase continuum material representations of cartilage, the results have indicated that local intermittent hydrostatic pressure promotes cartilage maintenance. Cyclic tensile strains (or shear), however, promote cartilage growth and ossification. Because single-phase material models cannot capture fluid exudation in articular cartilage, poroelastic (or biphasic) solid/fluid models are often implemented to study joint mechanics. In the middle and deep layers of articular cartilage where poroelastic analyses predict little fluid exudation, the cartilage phenotype is maintained by cyclic fluid pressure (consistent with the single-phase theory). In superficial articular layers the chondrocytes are exposed to tangential tensile strain in addition to the high fluid pressure. Furthermore, there is fluid exudation and matrix consolidation, leading to cell 'flattening'. As a result, the superficial layer assumes an altered, more fibrous phenotype. These computer model predictions of cartilage mechanobiology are consistent with results of in vitro cell and tissue and molecular biology experiments.  相似文献   

12.
Macroscopic structural damage to the cartilage articular surface can occur due to slicing in surgery, cracking in mechanical trauma, or fibrillation in early stage osteoarthrosis. These alterations may render cartilage matrix and chondrocytes susceptible to subsequent mechanical injury and contribute to progression of degenerative disease. To examine this hypothesis, single 300 microm deep vertical slices were introduced across a diameter of the articular surface of osteochondral explant disks on day 6 after dissection. Then a single uniaxial unconfined ramp compression at 7 x 10(-5) or 7 x 10(-2) s(-1) strain rate to a peak stress of 3.5 or 14 MPa was applied on day 13 during which mechanical behavior was monitored. Effects of slices alone and together with compression were measured in terms of explant swelling and cell viability on days 10 and 17. Slicing alone induced tissue swelling without significant cell death, while compression alone induced cell death without significant tissue swelling. Under low strain rate loading, no differences in the response to injurious compression were found between sliced and unsliced explants. Under high strain rate loading, slicing rendered cartilage more easily compressible and appeared to slightly reduce compression-induced cell and matrix injury. Findings highlight microphysical factors important to cartilage mechanical injury, and suggest ways that macroscopic structural damage may accelerate or, in certain cases, possibly slow the progression of cartilage degeneration.  相似文献   

13.
A time- and depth-dependent Poisson’s ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such as confined and unconfined compressions. A biphasic (poroelastic), fiber-embedded cartilage model was developed. The heterogeneous material properties of the cartilage (aggregate modulus, void ratio tensile modulus) were extracted from reported experiments on individual layers of bovine articular cartilage. The nonlinear permeability material constants were found by fitting the overall response to published experimental data from confined compression. The matrix of the cartilage was modelled as an inhomogeneous isotropic biphasic material with nonlinear strain dependent permeability. Orthotropic layers were added as embedded elements to represent collagen fibers. Material parameters for these layers were derived from tensile tests of different layers of cartilage. With these predefined tensile parameters, the model showed a good fit with multi-step confined and unconfined compression experiments (R2=0.984 and 0.977, respectively) and could also predict the depth-dependent Poisson’s ratio (R2=0.981). The highlight of the model is the ability to explain the time-depth dependent Poisson's ratio and, by association, the strong effect of material inhomogeneity on local stress and strain patterns within the cartilage layer. This material model’s response may provide valuable new insight into potential initiation of cartilage fibrillation or delamination in whole-joint simulations.  相似文献   

14.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

15.
Articular cartilage covers the temporomandibular joint (TMJ) and provides smooth and nearly frictionless articulation while distributing mechanical loads to the subchondral bone. The thickness of the cartilage is considered to be an indicator of the stage of development, maturation, aging, loading history, and disease. The aim of our study was to develop a method for ex vivo assessment of the thickness of the cartilage that covers the TMJ and to compare that with two other existing methods. Eight porcine TMJ condyles were used to measure cartilage thickness. Three different methods were employed: needle penetration, micro-computed tomography (micro-CT), and histology; the latter was considered the gold standard. Histology and micro-CT scanning results showed no significant differences between thicknesses throughout the condyle. Needle penetration produced significantly higher values than histology, in the lateral and anterior regions. All three methods showed the anterior region to be thinner than the other regions. We concluded that overestimated thickness by the needle penetration is caused by the penetration of the needle through the first layer of subchondral bone, in which mineralization is less than in deeper layers. Micro-CT scanning method was found to be a valid method to quantify the thickness of the cartilage, and has the advantage of being non-destructive.  相似文献   

16.
17.
Using several physical techniques the surface of articular cartilage has been reported to be structurally different from the deeper layers. In this paper using immunohistochemical methods, the surface has been shown to contain a characteristically different collagen, Type I in contrast to Type II which is the major collagen of cartilage. These results support previous proposals for a surface layer, or lamina splendens, the presence of which would be of considerable importance in understanding the degradation of cartilage in arthritides.  相似文献   

18.
The boundary lubrication function of articular cartilage is mediated in part by molecules at the articular surface and in synovial fluid, encoded by Prg4. The objective of this study was to determine whether static and dynamic compression regulate PRG4 biosynthesis by cartilage explants. Articular cartilage disks were harvested to include the articular surface from immature bovines. Some disks were subjected to 24 h (day 1) of loading, followed by 72 h (days 2-4) of free-swelling culture to assess chondrocyte responses following unloading. Loading consisted of 6 or 100 kPa of static compression, with or without superimposed dynamic compression (10 or 300 kPa peak amplitude, 0.01 Hz). Other disks were cultured free-swelling as controls. PRG4 secretion into culture medium was inhibited by all compression protocols during day 1. Following unloading, cartilage previously subjected to dynamic compression to 300 kPa exhibited a rebound effect, secreting more PRG4 than did controls, while cartilage previously subjected to 100 kPa static loading secreted less PRG4. Immunohistochemistry revealed that all compression protocols also affected the number of cells expressing PRG4. The paradigm that mechanical stimuli regulate biosynthesis in cartilage appears operative not only for load bearing matrix constituents, but also for PRG4 molecules mediating lubrication.  相似文献   

19.
Summary Two collagen-poor, ultramicroscopic layers are described at the surface of canine articular cartilage. They are distinguished by staining with an electron-dense cationic dye, Cupromeronic Blue, in a critical electrolyte concentration technique and by digestion with testicular hyaluronidase. The superficial layer, approximately 50 nm thick, stained at low electrolyte concentrations but failed to stain in conditions specific for sulphated glycosaminoglycans. It was hyaluronidase-resistant and may be either glycoprotein or protein in nature. The deeper layer, 100–400 nm thick, stained positively at electrolyte concentrations specific for sulphated glycosaminoglycans but not in conditions specific for keratan sulphate. It was removed by hyaluronidase digestion. This layer probably represents a chondroitin sulphate-rich proteoglycan.These surface layers may be important in the lubrication of the articular surface and in the permeability and compression resistance of the superficial cartilage zone.  相似文献   

20.
Costal cartilage (CC) is one of the load-bearing tissues of the rib cage. Literature on material characterisation of the CC is limited. Atomic force microscopy (AFM) has been extremely successful in characterising the elastic properties of soft biomaterials such as articular cartilage and hydrogels, which are often the material of choice for cartilage models. But AFM data on CC are absent in the literature. In this study, AFM indentations using spherical beaded tips were performed on human CC to isolate the mechanical properties. A novel method was developed for modelling the relaxation indentation experiments based on Fung's quasi-linear viscoelasticity and a continuous relaxation spectrum. This particular model has been popular for uniaxial compression test data analysis. Using the model, the mean Young's modulus of CC was found to be about 2.17, 4.11 and 5.49?MPa for three specimens. A large variation of modulus was observed over the tissue. Also, the modulus values decreased with distance from the costochondral junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号