首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the aminoacylase-1 (Acy1)/M20 family of aminoacylases and exopeptidases exist as either monomers or homodimers. They contain a zinc-binding domain and a second domain mediating dimerization in the latter case. The roles that both domains play in catalysis have been investigated for human Acy1 (hAcy1) by x-ray crystallography and by site-directed mutagenesis. Structure comparison of the dinuclear zinc center in a mutant of hAcy1 reported here with dizinc centers in related enzymes points to a difference in zinc ligation in the Acy1/M20 family. Mutational analysis supports catalytic roles of zinc ions, a vicinal glutamate, and a histidine from the dimerization domain. By complementing different active site mutants of hAcy1, we show that catalysis occurs at the dimer interface. Reinterpretation of the structure of a monomeric homolog, peptidase V, reveals that a domain insertion mimics dimerization. We conclude that monomeric and dimeric Acy1/M20 family members share a unique active site architecture involving both enzyme domains. The study may provide means to improve homologous carboxypeptidase G2 toward application in antibody-directed enzyme prodrug therapy.  相似文献   

2.
Two monofunctional Delta(3), Delta(2)-enoyl-CoA isomerases, one in mitochondria (mECI) and the other in both mitochondria and peroxisomes (pECI), belong to the low-similarity isomerase/hydratase superfamily. Both enzymes catalyze the movement of a double bond from C3 to C2 of an unsaturated acyl-CoA substrate for re-entry into the beta-oxidation pathway. Mutagenesis has shown that Glu165 of rat mECI is involved in catalysis; however, the putative catalytic residue in yeast pECI, Glu158, is not conserved in mECI. To elucidate whether Glu165 of mECI is correctly positioned for catalysis, the crystal structure of rat mECI has been solved. Crystal packing suggests the enzyme is trimeric, in contrast to other members of the superfamily, which appear crystallographically to be dimers of trimers. The polypeptide fold of mECI, like pECI, belongs to a subset of this superfamily in which the C-terminal domain of a given monomer interacts with its own N-terminal domain. This differs from that of crotonase and 1,4-dihydroxy-2-naphtoyl-CoA synthase, whose C-terminal domains are involved in domain swapping with an adjacent monomer. The structure confirms Glu165 as the putative catalytic acid/base, positioned to abstract the pro-R proton from C2 and reprotonate at C4 of the acyl chain. The large tunnel-shaped active site cavity observed in the mECI structure explains the relative substrate promiscuity in acyl-chain length and stereochemistry. Comparison with the crystal structure of pECI suggests the catalytic residues from both enzymes are spatially conserved but not in their primary structures, providing a powerful reminder of how catalytic residues cannot be determined solely by sequence alignments.  相似文献   

3.
The crystal structure of the uncharacterized protein SO2946 from Shewanella oneidensis MR-1 was determined with single-wavelength anomalous diffraction (SAD) and refined to 2.0 A resolution. The SO2946 protein consists of a short helical N-terminal domain and a large C-terminal domain with the "jelly-roll" topology. The protein assembles into a propeller consisting of three C-terminal blades arranged around a central core formed by the N-terminal domains. The function of SO2946 could not be inferred from the sequence since the protein represents an orphan with no sequence homologs, but the protein's structure bears a fold similar to that of proteins containing carbohydrate-binding modules. Features such as fold conservation, the presence of a conserved groove and a metal binding region are indicative that SO2946 may be an enzyme and could be involved in binding carbohydrate molecules.  相似文献   

4.
SecA, the motor subunit of bacterial polypeptide translocase, is an RNA helicase. SecA comprises a dimerization C-terminal domain fused to an ATPase N-terminal domain containing conserved DEAD helicase motifs. We show that the N-terminal domain is organized like the motor core of DEAD proteins, encompassing two subdomains, NBD1 and IRA2. NBD1, a rigid nucleotide-binding domain, contains the minimal ATPase catalytic machinery. IRA2 binds to NBD1 and acts as an intramolecular regulator of ATP hydrolysis by controlling ADP release and optimal ATP catalysis at NBD1. IRA2 is flexible and can undergo changes in its alpha-helical content. The C-terminal domain associates with NBD1 and IRA2 and restricts IRA2 activator function. Thus, cytoplasmic SecA is maintained in the thermally stabilized ADP-bound state and unnecessary ATP hydrolysis cycles are prevented. Two DEAD family motifs in IRA2 are essential for IRA2-NBD1 binding, optimal nucleotide turnover and polypeptide translocation. We propose that translocation ligands alleviate C-terminal domain suppression, allowing IRA2 to stimulate nucleotide turnover at NBD1. DEAD motors may employ similar mechanisms to translocate different enzymes along chemically unrelated biopolymers.  相似文献   

5.
Summary: The importance of molybdoenzymes is exemplified both by the debilitating and fatal human diseases caused by their deficiency and by their persistence throughout evolution. Here, we show that the protein fold of the molybdopyranopterin-containing domain of sulfite oxidase (the SUOX fold) can be found in all three domains of life. Analyses of sequence data and protein structure comparisons (secondary structure matching) show that the SUOX fold is found in enzymes that have quite distinct macromolecular architectures comprising one or more domains and sometimes subsidiary subunits. These are summarized as follows: (i) animal SUOXs that contain an N-terminal cytochrome b5 domain and an SUOX fold fused to a C-terminal dimerization domain; (ii) plant SUOX that contains an SUOX fold fused to a C-terminal dimerization domain; (iii) the YedY protein from Escherichia coli, which comprises only the SUOX fold; (iv) the sulfite dehydrogenase from Starkeya novella that contains the SUOX fold, a dimerization domain, and an additional c-type cytochrome subunit; and (v) the plant-type nitrate reductases, exemplified by that of Pichia angusta, that contain an N-terminal SUOX fold, a dimerization domain, a cytochrome b5 domain, and a C-terminal NADH binding flavin adenine dinucleotide-containing domain. We used the primary sequences of the proteins containing an SUOX fold to mine 559 sequences of related proteins. A phylogeny of a nonredundant subset of these sequences was generated, and the resultant clades were categorized by sequence motif analyses in the context of the available protein structures. Based on the motif analyses, cladistics, and domain conservations, we are able to postulate a plausible pathway of SUOX fold enzyme evolution.  相似文献   

6.
C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.  相似文献   

7.
Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.  相似文献   

8.
Chitinase C (ChiC) from Streptomyces griseus HUT6037 was the first glycoside hydrolase family 19 chitinase that was found in an organism other than higher plants. An N-terminal chitin-binding domain and a C-terminal catalytic domain connected by a linker peptide constitute ChiC. We determined the crystal structure of full-length ChiC, which is the only representative of the two-domain chitinases in the family. The catalytic domain has an alpha-helix-rich fold with a deep cleft containing a catalytic site, and lacks three loops on the domain surface compared with the catalytic domain of plant chitinases. The chitin-binding domain is an all-beta protein with two tryptophan residues (Trp59 and Trp60) aligned on the surface. We suggest the binding mechanism of tri-N-acetylchitotriose onto the chitin-binding domain on the basis of molecular dynamics (MD) simulations. In this mechanism, the ligand molecule binds well on the surface-exposed binding site through two stacking interactions and two hydrogen bonds and only Trp59 and Trp60 are involved in the binding. Furthermore, the flexibility of the Trp60 side-chain, which may be involved in adjusting the binding surface to fit the surface of crystalline chitin by the rotation of chi2 angle, is shown.  相似文献   

9.
BACKGROUND: Homoserine kinase (HSK) catalyzes an important step in the threonine biosynthesis pathway. It belongs to a large yet unique class of small metabolite kinases, the GHMP kinase superfamily. Members in the GHMP superfamily participate in several essential metabolic pathways, such as amino acid biosynthesis, galactose metabolism, and the mevalonate pathway. RESULTS: The crystal structure of HSK and its complex with ADP reveal a novel nucleotide binding fold. The N-terminal domain contains an unusual left-handed betaalphabeta unit, while the C-terminal domain has a central alpha-beta plait fold with an insertion of four helices. The phosphate binding loop in HSK is distinct from the classical P loops found in many ATP/GTP binding proteins. The bound ADP molecule adopts a rare syn conformation and is in the opposite orientation from those bound to the P loop-containing proteins. Inspection of the substrate binding cavity indicates several amino acid residues that are likely to be involved in substrate binding and catalysis. CONCLUSIONS: The crystal structure of HSK is the first representative in the GHMP superfamily to have determined structure. It provides insight into the structure and nucleotide binding mechanism of not only the HSK family but also a variety of enzymes in the GHMP superfamily. Such enzymes include galactokinases, mevalonate kinases, phosphomevalonate kinases, mevalonate pyrophosphate decarboxylases, and several proteins of yet unknown functions.  相似文献   

10.
The X-prolyl dipeptidyl aminopeptidase (X-PDAP) from Lactococcus lactis is a dimeric enzyme catalyzing the removal of Xaa-Pro dipeptides from the N terminus of peptides. The structure of the enzyme was solved at 2.2 A resolution and provides a model for the peptidase family S15. Each monomer is composed of four domains. The larger one presents an alpha/beta hydrolase fold and comprises the active site serine. The specificity pocket is mainly built by residues from a small helical domain which is, together with the N-terminal domain, essential for dimerization. A C-terminal moiety probably plays a role in the tropism of X-PDAP toward the cellular membrane. These results give new insights for further exploration of the role of the enzymes of the SC clan.  相似文献   

11.
Plant cell wall hydrolases generally have a modular structure consisting of a catalytic domain linked to one or more noncatalytic carbohydrate-binding modules (CBMs), whose common function is to attach the enzyme to the polymeric substrate. Xylanase A from Pseudomonas fluorescens subsp. cellulosa (Pf Xyn10A) consists of a family 10 catalytic domain, an N-terminal family IIa cellulose-binding module, and an internal family 10 cellulose-binding module. The structure of the 45-residue family 10 CBM has been determined in solution using NMR. It consists of two antiparallel beta-sheets, one with two strands and one with three, with a short alpha-helix across one face of the three-stranded sheet. There is a high density of aromatic residues on one side of the protein, including three aromatic residues (Tyr8, Trp22, and Trp24), which are exposed and form a flat surface on one face, in a classical polysaccharide-binding arrangement. The fold is closely similar to that of the oligonucleotide/oligosaccharide-binding (OB) fold, but appears to have arisen by convergent evolution, because there is no sequence similarity, and the presumed binding sites are on different faces.  相似文献   

12.
Crystal structure of the human myeloid cell activating receptor TREM-1   总被引:11,自引:0,他引:11  
Triggering receptors expressed on myeloid cells (TREM) are a family of recently discovered receptors that play important roles in innate immune responses, such as to activate inflammatory responses and to contribute to septic shock in response to microbial-mediated infections. To date, two TREM receptors in human and several homologs in mice have been identified. We report the 2.6 A resolution crystal structure of the extracellular domain of human TREM-1. The overall fold of the receptor resembles that of a V-type immunoglobulin domain with differences primarily located in the N-terminal strand. TREM-1 forms a "head-to-tail" dimer with 4100 A(2) interface area that is partially mediated by a domain swapping between the first strands. This mode of dimer formation is different from the "head-to-head" dimerization that existed in V(H)V(L) domains of antibodies or V domains of T cell receptors. As a result, the dimeric TREM-1 most likely contains two distinct ligand binding sites.  相似文献   

13.
The crystal structure of Methanococcus jannaschii shikimate 5-dehydrogenase (MjSDH) bound to the cofactor nicotinamide adenine dinucleotide phosphate (NADP) has been determined at 2.35 A resolution. Shikimate 5-dehydrogenase (SDH) is responsible for NADP-dependent catalysis of the fourth step in shikimate biosynthesis, which is essential for aromatic amino acid metabolism in bacteria, microbial eukaryotes, and plants. The structure of MjSDH is a compact alpha/beta sandwich with two distinct domains, responsible for binding substrate and the NADP cofactor, respectively. A phylogenetically conserved deep cleft on the protein surface corresponds to the enzyme active site. The structure reveals a topologically new domain fold within the N-terminal segment of the polypeptide chain, which binds substrate and supports dimerization. Insights gained from homology modeling and sequence/structure comparisons suggest that the SDHs represent a unique class of dehydrogenases. The structure provides a framework for further investigation to discover and develop novel inhibitors targeting this essential enzyme.  相似文献   

14.
GafD in Escherichia coli G (F17) fimbriae is associated with diarrheal disease, and the structure of the ligand-binding domain, GafD1-178, has been determined at 1.7A resolution in the presence of the receptor sugar N-acetyl-D-glucosamine. The overall fold is a beta-barrel jelly-roll fold. The ligand-binding site was identified and localized to the side of the molecule. Receptor binding is mediated by side-chain as well main-chain interactions. Ala43-Asn44, Ser116-Thr117 form the sugar acetamide specificity pocket, while Asp88 confers tight binding and Trp109 appears to position the ligand. There is a disulfide bond that rigidifies the acetamide specificity pocket. The three fimbrial lectins, GafD, FimH and PapG share similar beta-barrel folds but display different ligand-binding regions and disulfide-bond patterns. We suggest an evolutionary path for the evolution of the very diverse fimbrial lectins from a common ancestral fold.  相似文献   

15.
T4 RNA ligase 2 (Rnl2) exemplifies an RNA ligase family that includes the RNA editing ligases (RELs) of Trypanosoma and Leishmania. The Rnl2/REL enzymes are defined by essential signature residues and a unique C-terminal domain, which we show is essential for sealing of 3'-OH and 5'-PO4 RNA ends by Rnl2, but not for ligase adenylation or phosphodiester bond formation at a preadenylated AppRNA end. The N-terminal segment Rnl2(1-249) of the 334 aa Rnl2 protein comprises an autonomous adenylyltransferase/AppRNA ligase domain. We report the 1.9 A crystal structure of the ligase domain with AMP bound at the active site, which reveals a shared fold, catalytic mechanism, and evolutionary history for RNA ligases, DNA ligases, and mRNA capping enzymes.  相似文献   

16.
The acylpeptide hydrolase of porcine intestinal mucosa (pi-APH) is a serine peptidase belonging to the prolyl oligopeptiase family. The enzyme catalyzes the release of N-terminal acylamino acids, especially acetylamino acids, from acetylpeptides. pi-APH is an homotetramer of approximately 300 kDa. We report the loss of the native tetrameric structure of pi-APH upon citraconylation and the process was reversed at acidic pH, indicating that the subunits were noncovalently bound. Determination of free cysteines in combination with peptide mapping suggested the involvement of all cysteines in disulfide bridges. Two structural domains were identified based on the three-dimensional model of pi-APH monomer: a -propeller fold in the N-terminal sequence (113–455) and an / hydrolase fold corresponding to the C-terminal catalytic domain (469–732). Preferential cleavage sites for limited proteolysis with trypsin occurred within the -propeller domain, in agreement with the three-dimensional model. The putative role of this domain in the specificity mechanism of APH enzymes is also discussed.  相似文献   

17.
A novel human cDNA encoding a cysteine protease of the papain family named cathepsin F is reported. The mature part of the predicted protease precursor displays between 26% and 42% identity to other human cysteine proteases while the proregion is unique by means of length and sequence. The very long proregion of the cathepsin F precursor (251 amino acid residues) can be divided into three regions: a C-terminal domain similar to the pro-segment of cathepsin L-like enzymes, a 50 residue flexible linker peptide, and an N-terminal domain predicted to adopt a cystatin-like fold. Cathepsin F would therefore be the first cysteine protease zymogen containing a cystatin-like domain.  相似文献   

18.
We have previously proposed a model for the fold of the N-terminal domain of the small, regulatory subunit (SSU) of acetohydroxyacid synthase isozyme III. The fold is an alpha-beta sandwich with betaalphabetabetaalphabeta topology, structurally homologous to the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. We suggested that the N-terminal domains of a pair of SSUs interact in the holoenzyme to form two binding sites for the feedback inhibitor valine in the interface between them. The model was supported by mutational analysis and other evidence. We have now examined the role of the C-terminal portion of the SSU by construction of truncated polypeptides (lacking 35, 48, 80, 95, or 112 amino acid residues from the C terminus) and examining the properties of holoenzymes reconstituted using these constructs. The Delta35, Delta48, and Delta80 constructs all lead to essentially complete activation of the catalytic subunits. The Delta80 construct, corresponding to the putative N-terminal domain, has the highest level of affinity for the catalytic subunits and leads to a reconstituted enzyme with k(cat)/K(M) about twice that of the wild-type enzyme. On the other hand, none of these constructs binds valine or leads to a valine-sensitive enzyme on reconstitution. The enzyme reconstituted with the Delta80 construct does not bind valine, either. The N-terminal portion (about 80 amino acid residues) of the SSU is thus necessary and sufficient for recognition and activation of the catalytic subunits, but the C-terminal half of the SSU is required for valine binding and response. We suggest that the C-terminal region of the SSU contributes to monomer-monomer interactions, and provide additional experimental evidence for this suggestion.  相似文献   

19.
We report here the first crystal structure of the N-terminal domain of an A-type Lon protease. Lon proteases are ubiquitous, multidomain, ATP-dependent enzymes with both highly specific and non-specific protein binding, unfolding, and degrading activities. We expressed and purified a stable, monomeric 119-amino acid N-terminal subdomain of the Escherichia coli A-type Lon protease and determined its crystal structure at 2.03 A (Protein Data Bank [PDB] code 2ANE). The structure was solved in two crystal forms, yielding 14 independent views. The domain exhibits a unique fold consisting primarily of three twisted beta-sheets and a single long alpha-helix. Analysis of recent PDB depositions identified a similar fold in BPP1347 (PDB code 1ZBO), a 203-amino acid protein of unknown function from Bordetella parapertussis, crystallized as part of a structural genomics effort. BPP1347 shares sequence homology with Lon N-domains and with a family of other independently expressed proteins of unknown functions. We postulate that, as is the case in Lon proteases, this structural domain represents a general protein and polypeptide interaction domain.  相似文献   

20.
Peptidase family U34 consists of enzymes with unclear catalytic mechanism, for instance, dipeptidase A from Lactobacillus helveticus. Using extensive sequence similarity searches, we infer that U34 family members are homologous to penicillin V acylases (PVA) and thus potentially adopt the N-terminal nucleophile (Ntn) hydrolase fold. Comparative sequence and structural analysis reveals a cysteine as the catalytic nucleophile as well as other conserved residues important for catalysis. The PVA/U34 family is variable in sequence and exhibits great diversity in substrate specificity, to include enzymes such as choloyglycine hydrolases, acid ceramidases, isopenicillin N acyltransferases, and a subgroup of eukaryotic proteins with unclear function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号