首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Abstract

The metastasis-associated gene 1 (MTA1) has previously been recognized as an oncogene, and abnormal MTA1 expression has been related to progression of numerous cancer types to the metastasis stage. However, the function of MTA1 in the regulation of pancreatic cancer progression and metastasis remains unclear. Western blot analysis was adopted to determine the expression of MTA1 in pancreatic cancer tissues and corresponding near normal tissues. Steady clone with MTA1-overexpression and MTA1-inhibitionweregenerated via lentivirus technology in BxPc-3 cells. Transwell assay was carried out for detecting the invasion of pancreatic cancer cells. The migration activity was assessed using the wound scratch assay. The effect of MTA1 in pancreatic cancer was evaluated in the mice xenografts. Western blot analysis was employed to determine the expression of hypoxia inducible factor-α (HIF-α) and vascular endothelial growth factor (VEGF) in vitro and in vivo. We observed that MTA1 overexpression enhanced migration and invasion ability of pancreatic cancer cells in vitro and increased HIF-α and VEGF protein levels in vitro and in vivo. MTA1 inhibition had the opposite effects. MTA1 protein level was positively related to HIF-α and VEGF protein levels. These results indicated that MTA1 potentially promoted pancreatic cancer metastasis via HIF-α/VEGF pathway. This research supplies a new molecular mechanism for MTA1 in the pancreatic cancer progression and metastasis. MTA1 may be an effective therapy target in pancreatic cancer.  相似文献   

3.
4.
Objectives:MicroRNAs (miRNAs) have been considered as a new class of novel diagnostic and predictive biomarker in many diseases. However, there are few studies on miRNA in osteosarcoma (OS). This study aimed to investigate the roles of miR-30 on OS occurrence and development.Methods:PCR was used to detect mRNA levels of miR-30 and MTA1 in cancer tissues, adjacent non-cancerous tissues from OS patients. Western blot was used to detect MTA1 protein expression in all tissues and cell lines (hFOb1.19,Saos-2, MG63, and U2OS). The correlation between miR-30 and MTA1 was predicted through bioinformatics software, and identified by a luciferase reporting experiment. In vitro, functional test detected the specific effects of miR-30 and MTA1 on the development of OS.Results:miR-30 expression was significantly reduced, while the expression of MTA1 was increased in OS tissues and cells. Luciferase reporting experiment showed that miR-30 sponged MTA1 which was negatively correlated with miR-30 expression. Furthermore, rescue tests revealed that MTA1 restrained the functions of miR-30 on cell proliferation and migration of OS.Conclusion:Our finding showed that miR-30 modulated the proliferation and migration by targeting MTA1 in OS.  相似文献   

5.
6.
7.
MTA2 is a member of metastasis associated family, which is highly expressed in several solid tumors and associated with tumor cells migration and invasion. Here, we report that MTA2 is acetylated at K152 and histone acetyltransferase p300 binds to and acetylates MTA2. Furthermore, mutation of the MTA2 acetylation site inhibits the growth of colorectal cancer cells and migration and invasion of Rat1 fibroblasts. These results reveal a novel post-translational regulation of MTA2 by the way of p300-dependent acetylation, which is important for tumor cells growth and migration and provides a potential target for clinical cancer research.  相似文献   

8.
Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.  相似文献   

9.
10.
The placenta represents a critically important fetal-maternal interaction. Trophoblast migration and invasion into the uterine wall is a precisely controlled process and aberrations in these processes are implicated in diseases such as preeclampsia. Integrin-linked kinase (ILK) is a multifunctional, cytoplasmic, serine/threonine kinase that has been implicated in regulating processes such as cell proliferation, survival, migration, and invasion; yet the temporal and spatial pattern of expression of ILK in human chorionic villi and its role in early human placental development are completely unknown. We hypothesized that ILK would be expressed in trophoblast subtypes of human chorionic villi during early placental development and that it would regulate trophoblast migration. Immunoblot analysis revealed that ILK protein was highly detectable in placental tissue samples throughout gestation. In floating branches of chorionic villi, from 6 to 15 wk of gestation immunofluorescence analysis of ILK expression in placental tissue sections demonstrated that ILK was highly detectable in the cytoplasm and membranes of villous cytotrophoblast cells and in stromal mesenchyme, whereas it was barely detectable in the syncytiotrophoblast layer. In anchoring branches of villi, ILK was highly localized to plasma membranes of extravillous trophoblast cells. Transient expression of dominant negative E359K-ILK in the villous explant-derived trophoblast cell line HTR8-SVneo dramatically reduced migration into wounds compared to cells expressing wild-type ILK or empty vector. Therefore, our work has demonstrated that ILK is highly expressed in trophoblast subtypes of human chorionic villi during the first trimester of pregnancy and is a likely mediator of trophoblast migration during this period of development.  相似文献   

11.
Tamoxifen is commonly used to treat patients with ESR/ER-positive breast cancer, but its therapeutic benefit is limited by the development of resistance. Recently, alterations in macroautophagy/autophagy function were demonstrated to be a potential mechanism for tamoxifen resistance. Although MTA1 (metastasis-associated 1) has been implicated in breast tumorigenesis and metastasis, its role in endocrine resistance has not been studied. Here, we report that the level of MTA1 expression was upregulated in the tamoxifen resistant breast cancer cell lines MCF7/TAMR and T47D/TR, and knockdown of MTA1 sensitized the cells to 4-hydroxytamoxifen (4OHT). Moreover, knockdown of MTA1 significantly decreased the enhanced autophagy flux in the tamoxifen resistant cell lines. To confirm the role of MTA1 in the development of tamoxifen resistance, we established a cell line, MCF7/MTA1, which stably expressed MTA1. Compared with parental MCF7, MCF7/MTA1 cells were more resistant to 4OHT-induced growth inhibition in vitro and in vivo, and showed increased autophagy flux and higher numbers of autophagosomes. Knockdown of ATG7 or cotreatment with hydroxychloroquine, an autophagy inhibitor, restored sensitivity to 4OHT in both the MCF7/MTA1 and tamoxifen resistant cells. In addition, AMP-activated protein kinase (AMPK) was activated, probably because of an increased AMP:ATP ratio and decreased expression of mitochondrial electron transport complex components. Finally, publicly available breast cancer patient datasets indicate that MTA1 levels correlate with poor prognosis and development of recurrence in patients with breast cancer treated with tamoxifen. Overall, our findings demonstrated that MTA1 induces AMPK activation and subsequent autophagy that could contribute to tamoxifen resistance in breast cancer.  相似文献   

12.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC.Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1.In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.  相似文献   

13.
桂玲  张克强  王静 《生物磁学》2011,(19):3700-3702
目的:探讨子宫内膜癌组织中PTEN和MTA1表达及其与子宫内膜癌生物学行为之间的关系。方法:采用免疫组化SP法检测130例子宫内膜癌和40例正常宫内膜组织中PTEN和MTAl1的表达水平,并分析两者在子宫内膜癌中的相关性。结果:子宫内膜癌组织中PTEN、MTA1阳性表达均显著高于正常子宫内膜组织(P〈0.01);PTEN与MTAI在子宫内膜癌组织中的表达呈负相关(r=0.35,P〈0.05)。结论:PTEN和MTA1表达与子宫内膜癌的发生、发展及生物行为密切相关,且两者表达存在负相关性。  相似文献   

14.
During human pregnancy, the production of 17-beta-estradiol (E2) rises steadily to eighty fold at term, and placenta has been found to specifically bind estrogens. We have recently demonstrated the expression of estrogen receptor alpha (ER-alpha) protein in human placenta and its localization in villous cytotrophoblast (CT), vascular pericytes, and amniotic fibroblasts. In vitro, E2 stimulated development of large syncytiotrophoblast (ST) aggregates. In the present study we utilized ER-beta affinity purified polyclonal (N19:sc6820) and ER-alpha monoclonal (clone h-151) antibodies. Western blot analysis revealed a single ~52 kDa ER-beta band in chorionic villi (CV) protein extracts. In CV, strong cytoplasmic ER-beta immunoreactivity was confined to ST. Dual color immunohistochemistry revealed asymmetric segregation of ER-alpha in dividing villous CT cells. Prior to separation, the cell nuclei more distant from ST exhibited high ER-alpha, while cell nuclei associated with ST showed diminution of ER-alpha and appearance of ER-beta. In trophoblast cultures, development of ST aggregates was associated with diminution of ER-alpha and appearance of ER-beta immunoreactivity. ER-beta was also detected in endothelial cells, amniotic epithelial cells and fibroblasts, extravillous trophoblast (nuclear and cytoplasmic) and decidual cells (cytoplasmic only). In addition, CFK-E12 (E12) and CWK-F12 (F12) monoclonal antibodies, which recognize ~64 kDa ER-beta with hormone binding domain, showed nuclear-specific reactivity with villous ST, extravillous trophoblast, and amniotic epithelium and fibroblasts. Western blot analysis indicated abundant expression of a ~64 kDa ER-beta variant in trophoblast cultures, significantly higher when compared to the chorionic villi and freshly isolated trophoblast cell protein extracts. This is the first report on ER-beta expression in human placenta and cultured trophoblast. Our data indicate that during trophoblast differentiation, the ER-alpha is associated with a less, and ER-beta with the more differentiated state. Enhanced expression of ~64 kDa ER-beta variant in trophoblast cultures suggests a unique role of ER-beta hormone binding domain in the regulation of trophoblast differentiation. Our data also indicate that asymmetric segregation of ER-alpha may play a role in asymmetric division of estrogen-dependent cells.  相似文献   

15.
目的:探讨子宫内膜癌组织中PTEN和MTA1表达及其与子宫内膜癌生物学行为之间的关系。方法:采用免疫组化SP法检测130例子宫内膜癌和40例正常宫内膜组织中PTEN和MTA1的表达水平,并分析两者在子宫内膜癌中的相关性。结果:子宫内膜癌组织中PTEN、MTA1阳性表达均显著高于正常子宫内膜组织(P<0.01);PTEN与MTA1在子宫内膜癌组织中的表达呈负相关(r=-0.35,P<0.05)。结论:PTEN和MTA1表达与子宫内膜癌的发生、发展及生物行为密切相关,且两者表达存在负相关性。  相似文献   

16.
目的将人的MTAl外源基因整合到C57BL/6J小鼠中,构建稳定高表达MTAl的小鼠模型。方法通过RT—PCR方法克隆人的MTAl编码序列,将MTAl插入真核表达载体pcDNA3.1构建pcDNA3.1-MTAl载体,回收片段后利用显微注射技术将目的基因片段注入到受精卵的雄原核中,使用MTAl特异性的引物经PCR鉴定出基因型阳性的转基因小鼠,再利用Western—blot及免疫组化方法检测MTAl在转基因小鼠全身级织表达情况。结果成功构建了MTAl转基因注射片段。在320枚显微注射受精卵中挑选出300枚存活卵移植到10只ICR小鼠假孕受体的输卵管中,10只ICR小鼠均怀孕,移植成功率为100%,共生出子代鼠80只,经PCR检测其中共有9只整合了MTAl基因,整合率为11.25%。经PCR鉴定MTAl整合阳性的F1代小鼠,再经Western—blot和免疫组化分析检测MTAl表达水平在脑、肺、肝、肠等组织中表达明显增高,肾、骨骼肌表达无差异。结论成功构建了脑、肝、肺、结肠高表达MTAl的转基因小鼠,为进一步MTAl研究奠定了良好的研究模型。  相似文献   

17.
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.  相似文献   

18.
Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib selectively kills cancer cells with BRCA-deficiency and is approved for BRCA-mutated breast, ovarian and pancreatic cancers by FDA. However, phase III study of olaparib failed to show a significant improvement in overall survival in patients with gastric cancer (GC). To discover an effective biomarker for GC patient-selection in olaparib treatment, we analyzed proteomic profiling of 12 GC cell lines. MTA2 was identified to confer sensitivity to olaparib by aggravating olaparib-induced replication stress in cancer cells. Mechanistically, we applied Cleavage Under Targets and Tagmentation assay to find that MTA2 proteins preferentially bind regions of replication origin-associated DNA sequences, which could be enhanced by olaparib treatment. Furthermore, MTA2 was validated here to render cancer cells susceptible to combination of olaparib with ATR inhibitor AZD6738. In general, our study identified MTA2 as a potential biomarker for olaparib sensitivity by aggravating olaparib-induced replication stress.  相似文献   

19.
20.
Human metastasis-associated gene 1 (MTA1) is highly associated with the metastasis of prostate cancer; however, the molecular functions of MTA1 that facilitate metastasis remain unclear. In this study, we demonstrate that the silencing of MTA1 by siRNA treatment results in the upregulation of E-cadherin expression by the phosphorylation of AKT (p-AKT) and decreases the invasiveness of prostate cancer cells. We show that MTA1 is expressed in over 90% of prostate cancer tissues, especially metastatic prostate cancer tissue, comparing to non-expression in normal prostate tissue. RT-PCR analysis and Western blot assay showed that MTA1 expression is significantly higher in highly metastatic prostate cancer PC-3M-1E8 cells (1E8) than in poorly metastatic prostate cancer PC-3M-2B4 cells (2B4). Silencing MTA1 expression by siRNA treatment in 1E8 cells increased the cellular malignant characters, including the cellular adhesive ability, decreased the cellular invasive ability and changed the polarity of cellular cytoskeleton. 1E8 cells over-expressing MTA1 had a reduced expression of E-cadherin, while 1E8 cells treated with MTA1 siRNA had a higher expression of E-cadherin. The expression of phosphorylated AKT (p-AKT) or the inhibition of p-AKT by wortmannin treatment (100 nM) significantly altered the function of MTA1 in the regulation of E-cadherin expression. Alterations in E-cadherin expression changed the role of p-AKT in cellular malignant characters. All of these results demonstrate that MTA1 plays an important role in controlling the malignant transformation of prostate cancer cells through the p-AKT/E-cadherin pathway. This study also provides a new mechanistic role for MTA1 in the regulation of prostate cancer metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号