首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ribosomes from Escherichia coli were tested for activity in initiation with R17 RNA as messenger. All vacant 70 S ribosomes but not all subunits were found to be active. The ability of 30 S and 50 S subunits to form a 70 S couple at Mg2+ concentrations above 4 mm is a stringent test for activity.Fresh extracts, prepared at 10 mm-Mg2+ from cells harvested after slow cooling contain up to 80% of the ribosomes in the form of vacant 70 S couples and 20% of free subunits. The proportion of subunits increases with standing as a result of the preferential inactivation of the 50 S particles. “Native” subunits are heterogeneous and consist mostly of active 30 S and inactive 50 S particles.In contrast to 50 S subunits, 30 S subunits prepared by exposure of 70 S ribosomes to low Mg2+ concentrations, are largely inactive and unable to reassociate with their active 50 S counterparts. However, both initiation and association activity can be restored by heating.The results imply that the structures necessary for subunit association are most critical for the biological activity of ribosomes, presumably because they are topologically closely related to the binding sites for messenger RNA, transfer RNA, and the protein factors for initiation, translocation and termination.  相似文献   

2.
Slowly cooled cells of an extreme thermophilic eubacterium Calderobacterium hydrogenophilum possess ribosomes with weakly associated subunits. These ribosomal subunits are capable of association to 70S ribosomes either at higher Mg2+ concentrations (30–40 mM) or at 4–10 mM Mg2+ and in the presence of polyamines. The contribution of 30S and 50S subunits to the hydrodynamic stability of ribosomes was examined by forming hybrid 30S–50S couples from C. hydrogenophilum and Escherichia coli. At lower Mg2+ (4–10 mM) heterogeneous subunits containing 30S E. coli and 50S C. hydrogenophilum and homogeneous subunits of the thermophilic bacterium associated only in the presence of polyamines. Ribosomal subunits associated at 30 mM Mg2+ lose thermal stability and activity concerning poly(AUG)-dependent binding of f[3H]Met-tRNA to the P-site on 70S ribosomes or translation of poly(UG). Poly(AUG), deacylated-tRNA or initiator-tRNA have no valuable effect on association of 30S and 50S subunits. Protein synthesis initiation factor IF3 of C. hydrogenophilum prevents association of ribosomal subunits to 70S ribosomes at physiological temperature (70°C). The factor also stimulates dissociation of 70S ribosomes of E. coli at 37°C. The codon-specific binding of f[3H]Met-tRNA to homogeneous 70S ribosomes of C. hydrogenophilum at 70°C is dependent on the presence of initiation factors and concentrations of tri-pentaamines. However, excess of polyamines inhibited the reaction. Our results indicate that tri-pentaamines enhance conformational stability of 70S initiation complex at elevated temperatures.  相似文献   

3.
Release of 70 S ribosomes from polysomes in Escherichia coli   总被引:5,自引:0,他引:5  
In order to determine whether ribosomes are released from messenger RNA as intact particles or as subunits, polysomes of Escherichia coli labeled with heavy isotopes were allowed to run off together with “light” polysomes. The normally rapid post-run-off exchange of subunits by free ribosomes was virtually eliminated by two means: the use of purified polysomes (relatively free of initiation factors), and incubation at a lower temperature (25 °C), or at a somewhat higher Mg2+ concentration (12 to 14 mm), than is conventional. Under these conditions ribosomes released by run-off or by puromycin accumulated without subunit exchange. Hence, even though the ribosome normally initiates via subunits, it is released from RNA by a conformational change in the intact 70 S particle, rather than by dissociation.  相似文献   

4.
The interaction of the antibiotic vernamycin Bα with Escherichia coli ribosomes has been studied. The antibiotic is bound to 70S ribosomes and 50S subunits but not to the 30S subunit or to polysomes. The binding of the antibiotic requires K+ or NH+4 and Mg2+. At saturation approximately 0.5 mole of antibiotic is bound per mole of ribosomes. The vernamycin Bα-ribosome complex is unstable. The bound antibiotic is readily displaced by nonradioactive vernamycin Bα and by a number of other antibiotics which are known to interact with the 50S subunit. The dissociation of the vernamycin Bα-ribosome complex is prevented by the simultaneous binding of vernamycin A. The binding sites for A and Bα are distinguishable since both drugs are able to bind simultaneously and neither prevents binding of the other, Ribosomes isolated from an erythromycin-resistant mutant are incapable of binding vernamycin A and Bα, indicating that the mutated protein responsible for resistance to erythromycin distorts the ribosome making it also unreceptive for the vernamycins.  相似文献   

5.
Initiation factor IF-3 is required for the binding of fMet-tRNA to 70S ribosomes directed by AUG, poly (U,G), f2RNA and T4 late RNA as well as for the binding of acPhe-tRNA directed by poly (U). In contrast, IF-3 is not required for the binding of the initiator aminoacyl-tRNAs to isolated 30S subunits directed by the synthetic messengers, but is required for maximal formation of initiation complexes with natural messengers. These data indicate that with synthetic messengers the sole function of IF-3 is to dissociate the 70S ribosomes into subunits, whereas with natural messengers IF-3 is required not only for dissociation of the ribosomes but also for the binding of the messenger to the 30S subunit.  相似文献   

6.
Summary The peptide antibiotic viomycin at a concentration of 10 M inhibits E. coli ribosomes to the extent of about 70% as measured in the poly(U) system, and to about 85% in a natural mRNA (R17) system. Ribosomes from M. smegmatis show no activity at all at this concentration of the antibiotic. Experiments on the Mg2+ dependent dissociation and association of the ribosomal subunits revealed that viomycin stabilizes the 70S couples and promotes association of ribosomal subunits. This response is related to the drug action as indicated by the observation that viomycin resistant strains are not affected by viomycin with respect to dissociation and 70S couple information. A model for the inhibitory action of the drug is proposed.  相似文献   

7.
The following two articles clarify the involvement of initiation factor F3 in the translation of messenger RNA. First, Sabol and Ochoa tell how they used 35S-labelled F3 to prove that 70S ribosomes, released at polypeptide chain termination, are dissociated when F3 binds to the 30S ribosomal subunit.  相似文献   

8.
Previous studies in this series (M. Noll et al., 1973a,b; Noll & Noll, 1974) have established that in Escherichia coli the ability of subunits to form vacant 70 S ribosome couples at 10 mm-Mg2+ is a stringent condition for activity in the translation of natural messenger (R17 RNA). The present study examines the structural basis of subunit interaction. It is found that vacant ribosome couples prepared by various methods fall into two classes, “tight” couples and “loose” couples, that differ in the affinity of their subunits for each other. Detection and separation of the two particle species is possible by ultracentrifugation. When analyzed on sucrose gradients at 6 mm-Mg2+ and moderate speed (30,000 revs/min), tight couples sediment as undissociated 70 S ribosomes, whereas loose couples are completely dissociated and sediment as 30 S and 50 S subunits. At 15 mm-Mg2+ in the gradient, both species sediment as a 70S peak. At 10 mm-Mg2+ and 60,000 revs/min, two peaks (63 S and 55 S) are seen because the high hydrostatic pressure causes more pronounced dissociation of the loose than of the tight couples.Association is dependent on the state of each subunit. Removal of Mg2+ produces 30 S b-particles that are unable to associate with 50 S subunits unless reconverted to the 30 S a-form by thermal activation according to Zamir et al. (1971). In the dissociated state, 50 S subunits tend to change irreversibly to a 50 S b-modification that produces loose couples upon association with 30 S a-subunits. The 50 S a → 50 S b transition could not be related to breaks in 23 S RNA detectable by sedimentation analysis. However, mild treatment of 50 S a-subunits with RNase produces particles that associate with 30 S a-subunits to couples that are less stable than the loose couples resulting from a dissociation/association step.Fresh S-30 extracts contain only tight couples (approx. 80%) and subunits (approx. 20%). Our results suggest that loose couples are artefacts derived from tight couples by a structural or conformational modification.Interaction-free subunits that previously were found to form a primitive initiation complex with poly(U) and tRNAPhe (Schreier & Noll, 1970,1971), and to be active in phenylalanine polymerization, are shown to consist of the b-form of each subunit.It is likely that conflicting results obtained in the study of the mechanism of initiation and other aspects of ribosome function are due to the lack of structural criteria required for standardizing the ribosome preparation used by different investigators. This study provides simple methods and criteria to classify and separate physically all ribosome and ribosome subunits that have been observed into well-defined classes of predictable activity.  相似文献   

9.
Three mRNA analogs—derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position—were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNAPhe was used, while tRNAVal was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions –3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with mild UV light ( > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions –1 to +3 binds to G1207, while that in positions –2 or –3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the –3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the –3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

10.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

11.
These studies were designated to investigate the effect of chlortetracycline on sedimentation properties of polysomes and ribosomes present in the chlortetracycline producing strain ofStreptomyces aureofaciens. In presence of chlortetracycline polysomes and ribosomes are more stable than the bacterial ones. At lower chlortetracycline concentrations (1–5 μg/ml) dissociation of polysomes into 70 S monomers was not observed. Ribosomes in higher concentration of chlortetracycline (400 μg/ml) form aggregates. A decrease of Mg2+ to 0.1mm caused dissociation of ribosomes to two subunits and in this state none of indicated concentrations of chlortetracycline caused aggregation. The exact sedimentation values of ribosomes and ribosomal subunits were calculated from extrapolation to infinite dilution. S20,w for monomer form was 68.8, and for ribosomal subunits 49.8 and 31.2 respectively. Ribosomal RNA sedimentates as two Schlieren peaks of 16 S and 22 S. It was found that 30 S subunits contain 15 structural proteins, while 21 proteins were resolved from 50 S subunits.  相似文献   

12.
Ricin from Ricinus communis was isolated and the binding of 3H-reductively alkylated or 125I-iodinated ricin was studied by incubating the toxic protein with ribosomes and isolating the ricin-ribosome complex by centrifugation. Neither of the labeled ricin derivatives nor 3H-labeled A chain bound Escherichia coli ribosomes, but both bound rat liver ribosomes in a reproducible manner. 3H-labeled ricin bound in a ratio of 1 mol/mol of ribosomes with a dissociation constant of 3 μm as calculated from a Scatchard plot. Similarly, 3H-labeled B chain isolated from ricin also bound in a one-to-one complex with a dissociation constant of 1 μm. The binding of ricin and ricin B chain was sensitive to lactose, while the binding of reduced ricin or ricin A chain was not prevented by lactose. Reduced 125I-labeled ricin in the presence of lactose and 3H-labeled A chain bound with a ratio of 2 mol/mol of ribosomes. It was further demonstrated that 3H-labeled ricin A chain bound only to the 60S ribosomal subunit and not to the 40S ribosomal subunit. The dissociation constant for the binding was 2 μm both in the presence and absence of lactose and 2 mol of A chain were bound per mole of 60S ribosomal subunit.  相似文献   

13.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   

14.
Rabbit globin messenger RNA was labelled in vitro with 125I to specific activities in the range 20 to 200 × 106 cts/min per μg. This 125I-labelled mRNA bound to rabbit reticulocyte ribosomes with the kinetics and sensitivity to inhibitors expected from its participation in the normal process of the initiation of protein synthesis. Furthermore, when modified in 25% of its cytidine residues with unlabelled iodide, the mRNA coded for the same series of initiation peptides as did the unmodified mRNA. Using the techniques of RNA fingerprinting, the binding reaction was shown to select against contaminants and against “globin mRNA” molecules which lack a particular oligonucleotide implicated in the initiation process. When the 125I-labelled mRNA was bound to ribosomes, both the initiating 40 S subunits and the 80 S ribosomes protected a fraction of the mRNA from digestion by pancreatic ribonuclease. Fingerprint analysis showed that highly specific regions of the mRNA were protected by the 40 S subunits and 80 S ribosomes and that these two protected regions were not identical.  相似文献   

15.
Proteins occurring at, or near, the subunit interface of E. coli ribosomes   总被引:9,自引:0,他引:9  
Summary The identification of ribosomal proteins that occur at, or near, the subunit interface of the 30S and 50S subunits in the E. coli 70S ribosome was attempted by studying the effect of antibodies on the Mg++ dependent dissociation-association equilibrium of 70S ribosomes. Dissociated ribosomes were mixed with monovalent fragments of IgG antibodies (Fab's) specific for each ribosomal protein and then reassociated into intact 70S particles. Various degrees of inhibition of this reassociation were observed for proteins S9, S11, S12, S14, S20, L1, L6, L14, L15, L19, L20, L23, L26 and L27. A small amount of aggregation of 50S subunits was caused by IgG's specific for the proteins S9, S11, S12, S14 and S20 and purified 50S subunits. It was inferred that the presence of small amounts of these proteins on 50S subunits was compatible with their presence at the subunit interface. Finally, the capacity of proteins S11 and S12 to bind to 23S RNA was demonstrated.Paper No. 84 on Ribosomal Proteins. Preceding paper is by Rahmsdorf et al., Molec. gen. Genet. 127, 259–271 (1973).  相似文献   

16.
The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.  相似文献   

17.
The effect of 30S subunit attachment on the accessibility of specific sites in 5 S and 23 S RNA in 50 S ribosomal subunits was studied by means of the guanine-specific reagent kethoxal. Oligonucleotides surrounding the sites of kethoxal substitution were resolved and quantitated by diagonal electrophoresis. In contrast to the extensive protection of sites in 16 S RNA in 70 S ribosomes (Chapman &; Noller, 1977), only two strongly (approx. 90%) protected sites were detected in 23 S RNA. The nucleotide sequences at these sites are
in which the indicated kethoxal-reactive guanines (with K above them) are strongly protected by association of 30 S and 50 S subunits. The latter sequence has the potential to base-pair with nucleotides 816 to 821 of the 16 S RNA, a site which has been shown to be protected from kethoxal by 50 S subunits and essential for subunit association. Six additional sites in 23 S RNA are partially (30 to 50%) protected by 30 S subunits. One of these sequences,
is complementary to nucleotides 787 to 792 of 16 S RNA. a site which is also 50 S-protected and essential for association. Of the two kethoxal-reactive 5 S RNA sites in 50 S subunits, G13 is partially protected in 70 S ribosomes. while G41 remains unaffected by subunit association.The relatively small number of kethoxal-reactive sites in 23 S RNA that is strongly protected in 70 S ribosomes suggests that subunit association may involve contacts between single-stranded sites in 16 S RNA and 50 S subunit proteins or non-Watson-Crick interactions with 23 S RNA. in addition to the two suggested base-paired contacts.  相似文献   

18.
A cell-free protein synthesizing system was used to study the mechanism of resistance to streptomycin (Str) and spectinomycin (Spc) in laboratory mutants and clinical isolates of Neisseria gonorrhoeae. The 70S ribosomes from sensitive strains were sensitive to the effects of Str and Spc on synthesis directed by several synthetic polynucleotide messengers, whereas 70S ribosomes from resistant strains were resistant to these same effects. In each case, the alteration was localized to the 30S ribosomal subunit by studying antibiotic sensitivities of hybrid 70S ribosomes formed by combining subunits from sensitive and resistant strains. No evidence was found for streptomycin- or spectinomycin-inactivating enzymes.  相似文献   

19.
Crosslinking of mRNA analog, dodecaribonucleotide pUUAGUAUUUAUU derivative carrying a perfluoroarylazido group at the guanine N7, was studied in model complexes with 80S ribosomes involving tRNA and in binary complex (i.e., in the absence of tRNA). It was shown that, irrespectively of complex formation conditions (13 mM Mg2+, or 4 mM Mg2+ in the presence of polyamines), the mRNA analog in binary complex with 80S ribosomes was crosslinked with sequence 1840–1849 of 18S rRNA, but in the complexes formed with participation of Phe-tRNAPhe (where the G residue carrying the arylazido group occupied position –3 to the first nucleotide of the UUU codon at the P site) the analog was crosslinked with nucleotide 1207. The presence and the nature of tRNA at the E site had no effect on the environment of position –3 of the mRNA analog. Efficient crosslinking of the mRNA analog with tRNA was observed in all studied types of complex. Modified codon GUA, when located at the E site, underwent crosslinking with both cognate valine tRNA and noncognate aspartate tRNA for which the extent of binding at the E site of 80S ribosomes was almost the same and depended little on Mg2+ concentration and the presence of polyamines.  相似文献   

20.
The cytoplasmic and chloroplast ribosomes from the marine diatom Cylindrotheca fusiformis were isolated and characterized. The cytoplasmic ribosomes sedimented in sucrose at 84S and dissociated into subunits of 64S and 42S in the absence of Mg2+. It contained ribosomal RNAs with molecular weights of 1.31×106 and 0.70×106. The chloroplast ribosomes sedimented at 70S only in the presence of high Mg2+ concentrations (25–100 mM). No stable subunits were routinely observed and at very high levels of Mg2+ (>100 mM) the 70S species was converted to a form sedimenting at 55S. At 4°C ribosomal RNAs with molecular weights of 1.1×106 and 0.40×106 were detected on polyacrylamide gel electrophoresis. When the RNAs were resolved at room temperature the large molecular weight component disappeared while RNA with molecular weights of 0.65×106 and 0.53×106 were observed. Apparently the large chloroplast RNAs dissociated into two pieces of unequal molecular weight. These properties of the diatom's chloroplast ribosomes are very similar to those of the counter parts in unicellular green algae, which suggests that both types of algae have a common phylogenetic ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号