首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A study on the influence of procaine on the sodium transport properties in frog skin was carried out. The application of procaine hydrochloride on either the mucosal or the serosal sides of the isolated frog skin has opposite effects. When added to the mucosal compartment, the procaine (as well as two procaine based drugs: Gerovital H3 and Aslavital) biphasically increase the short-circuit current (Isc) with a noticeable "recline" phenomenon, and decrease the slope resistance, as given by the I-V curves. When applied in the serosal compartment, Isc is decreased and the slope resistance of the epithelium is increased. The procaine effect on the apical membranes shows a pronounced dependence on the external sodium concentration. The shift of the E2 inflection point (which indicates the critical intensity of the electric field at which the epithelial conductance changes), with respect to the transepithelial open-circuit potential, shows a rapid and quasi-exponential increase following the application of 25 mM procaine in addition to the different mucosal Na concentrations.  相似文献   

3.
4.
Anionic dependence of sodium transport in the frog skin   总被引:2,自引:0,他引:2  
  相似文献   

5.
22Na+ and 42K+ fluxes across the basolateral membrane of the isolated epithelium of frog skin were investigated with regard to dependence on K+ in the basolateral solution. When K+ was removed from the basolateral solution (K+-free Ringer), there was a transient rise in short circuit current (Isc) that could be eliminated by pretreatment with ouabain. Concurrently, the apparent sodium efflux across the basolateral membrane (JNa*13) showed either no change or an immediate (1-2 min) small decrease (approximately equal to 10%) that was followed by a small transient increase. K+ fluxes showed either no change or a small decrease under these conditions. JNa*13 was partially ouabain sensitive during all of the above treatments. Furosemide partially inhibited both sodium and potassium flux after K+-free treatment. The pump, as defined by ouabain sensitivity of Na+ flux, continued to work even after 20 minutes of K+-free treatment. Pump activity may be maintained by potassium leaking from the cells that is recycled by the pump. However, the ouabain-sensitive transient rise in Isc after K+-free treatment cannot readily be explained by changes in either Na+ or K+ flux. A change in pump coupling ratio provides one explanation for these data.  相似文献   

6.
Frog skin has been used as a model epithelial sodium-transporting system to study the effect of ethanol on ion transport. Treatment of the outside of frog skin with ethanol decreased the net sodium transport due to inhibition of 22Na+ influx. Ethanol did not alter sodium outflux when bathing the outside of the skin. The inhibition was in proportion to the concentration of ethanol, 0.25 M resulting in 50% inhibition. The chloride permeability of the skin was increased several-fold when the skin was exposed to ethanol in either bathing solution. With 0.4 M ethanol in the inner bathing solution, all the unidirectional fluxes of Na+ and Cl? were increased. The movement of Cl? was evaluated by comparison of Cl? flux with urea flux, since urea is thought to move passively across frog skin via an extracellular (shunt) pathway. Chloride flux was increased to a greater extent than urea flux. These experiments indicate that ethanol affects chloride permeability beyond an increase in extracellular ion flow and independent of its effect on Na+ transport.  相似文献   

7.
8.
Frog skin has been used as a model epithelial sodium-transporting system to study the effect of ethanol on ion transport. Treatment of the outside of frog skin with ethanol decreased the net sodium transport due to inhibition of 22Na+ influx. Ethanol did not alter sodium outflux when bathin the outside of the skin. The inhibition was in proportion to the concentration of ethanol, 0.25 M resulting in 50% inhibition. The chloride permeability of the skin was increased several-fold when the skin was exposed to ethanol in either bathing solution. With 0.4 M ethanol in the inner bathing solution, all the unidirectional fluxes of Na+ and C1- were increased. The movement of C1- was evaluated by comparison of C1- flux with urea flux, since urea is thought to move passively across frog skin via an extracellular (shunt) pathway. Chloride flux was increased to a greater extent than urea flux. These experiments indicate that ethanol affects chloride permeability beyond an increase in extracellular ion flow and independent of its effect of Na+ transport.  相似文献   

9.
10.
Summary In frog skin (Rana temporaria) acetylcholine applied to the serosal surface produces either a sustained inhibition or sustained stimulation of short-circuit current (SCC). The former effect is accompanied by a reduction and the latter by an increase in total tissue conductance. Both effects of acetylcholine can be accounted for, within experimental error, by changes in net sodium flux across the tissue. By use of selective agonists and antagonists it is concluded that acetylcholine interacts with muscarinic receptors in the serosal membrane. The effects of cholinoceptor agents are also seen with isolated epithelium.The stimulatory effect of acetylcholine is potentiated by theophylline and blocked by inhibitors of prostaglandin synthetase and by mepacrine. It is suggested that acetylcholine stimulates transport by liberating prostaglandins which may then activate adenylcyclase. The inhibitory effect of acetylcholine is correlated with a reduction in cyclic AMP content of the epithelium. Calcium appears to be an important determinant of the type of response seen with acetylcholine, but the mechanism is not known.  相似文献   

11.
The authors studied the effect of Mercurascan (MSC) (a hydroxy- mercury derivative of fluorescein) on electrical parameters, namely potential difference (P.D.) and short circuit current (S.C.C.) of frog skin and on the ability of frog bladder tissue to accumulate sodium ions in experiments in vitro. It was found that MSC, in 10(-4) mol/l concentration, reduced the S.C.C., after a brief initial increase, to 5% of the original value and that the P.D. fell steadily right from the outset. In 10(-5) mol/l concentration it raised the S.C.C. by 60% and the increase lasted several hours. The P.D. was unaffected. In 10(-7) and 10(-6) mol/l concentration MSC had no effect on the NA+ content of a nonpolarized frog bladder tissue preparation, but a 10(-5) nol/l concentration sharply reduced it. The effect of MSC on membrane Na+--K+ ATPase, i.e. on the energy metabolism of cellular tissue, is discussed with reference to these results.  相似文献   

12.
Benzodiazepine binding sites are present in a variety of non-neuronal tissues including the kidney where they are localized to distal nephron segments. It is postulated that renal binding sites are involved in modulating ion transport. This study examined the effects of two benzodiazepines on sodium transport in frog skin epithelium, a model system for sodium transport in renal collecting duct. Treatment of short-circuited frog skin with diazepam (a non-selective benzodiazepine agonist) stimulated amiloride-sensitive short-circuit current, reflecting stimulation of active sodium transport. The diazepam response was equally effective with either serosal or mucosal application of the drug. Maximal stimulation of the current (42 +/- 8%) was achieved with 10 microM diazepam (serosal). Short-circuit current was similarly augmented by serosal or mucosal addition of Ro5-4864, a benzodiazepine agonist with selective activity at peripheral (non-neuronal) receptors. The natriferic response to diazepam was additive to that of vasopressin or cyclic AMP suggesting that the mode of action of benzodiazepines is probably distinct from the cyclic AMP pathway. Thus, frog skin appears to be a useful model to examine the epithelial effects of benzodiazepines. Whether stimulation of sodium transport, however, involves peripheral-type benzodiazepine receptors in this tissue requires further studies.  相似文献   

13.
14.
15.
16.
17.
I A Skul'ski?  A V Lapin 《Tsitologiia》1983,25(11):1284-1288
It has been shown that Tl+ accumulated in the frog skin cells (Rana temporaria) inhibits irreversibly the unidirectional transport of Na+ estimated by the short circuit current (SCC). The inhibiting effect of Tl+ cannot be attributed to a decrease of Na+ penetration through the apical membranes. The influx of 22Na+ from mucosal bathing solution into the skin poisoned with Tl+ was about 50% of that observed in the intact skin, while the SCC was completely inhibited. The activity of the ouabain-sensitive Na+/K+ pumps located in the basolateral cell membranes was estimated by studying the uptake of 86Rb+ as a tracer for K+. This activity was high enough to maintain the ion composition of epithelial cells in spite of their ability to accomplish the undirectional transport of Na+. Tl+ seems to inhibit the production of respiration energy utilized in the undirectional Na+ transport, while the ion homeostasis of epithelial cells may be supported by the Na+/K+ pumps consuming energy of glycolytic reactions.  相似文献   

18.
19.
The tightness of coupling between two processes is advantageously evaluated by the thermodynamic degree of coupling q, varying in absolute value from zero for uncoupled processes to unity for processes which are related stoichiometrically. Two methods for the determination of q in the active pathway in frog skin have been developed, employing amiloride to abolish active sodium transport. The values of q in 6 frog skins varied, but were always less than unity (mean 0.79 ± 0.06 S.E. according to one method, 0.78 ± 0.06 S.E. according to the other). This indicates that metabolism and sodium transport are incompletely coupled in this tissue even when passive transepithelial leakage pathways are taken into account.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号